File size: 6,569 Bytes
b4d8745
4e7d1a7
b4d8745
 
5351689
b4d8745
5351689
 
 
4e7d1a7
 
 
 
 
 
b4d8745
 
 
 
 
 
4e7d1a7
 
b4d8745
 
 
 
 
5351689
b4d8745
 
 
 
 
 
4e7d1a7
b4d8745
 
 
 
 
 
5351689
 
b4d8745
 
 
 
 
 
 
 
5351689
b4d8745
 
 
 
 
5351689
b4d8745
 
 
5351689
b4d8745
 
 
 
 
5351689
b4d8745
 
 
5351689
b4d8745
 
 
 
 
 
 
5351689
b4d8745
 
 
5351689
 
 
 
 
 
 
 
 
4e7d1a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d8745
 
 
 
 
 
 
4e7d1a7
 
 
b4d8745
 
 
5351689
b4d8745
f4f0bbf
b4d8745
 
 
 
 
 
 
 
 
 
 
 
 
4e7d1a7
 
 
 
 
 
5351689
 
b4d8745
 
 
 
 
5351689
 
 
 
 
 
 
4e7d1a7
 
 
 
 
 
 
b4d8745
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Speech Translation Demo with Restart and TTS

This demo performs the following:
  1. Accepts up to 15 seconds of audio recording from the microphone.
  2. Uses OpenAI’s Whisper model to transcribe the speech.
  3. Splits the transcription into segments and translates each segment
     on-the-fly using Facebook’s M2M100 model.
  4. Streams the cumulative translation output to the user.
  5. Provides a "Restart Recording" button that resets the audio input and translation output.
  6. Offers a "Read Translated Text" button that converts the final translation
     into speech using gTTS.
     
Note: True real-time translation (i.e. while speaking) requires a continuous streaming
solution which is not provided by the standard browser microphone input.
"""

import gradio as gr
import whisper
import torch
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
from gtts import gTTS
import uuid

# -----------------------------------------------------------------------------
# Global Model Loading
# -----------------------------------------------------------------------------
# Load the Whisper model (using the "base" model for a balance between speed and accuracy).
whisper_model = whisper.load_model("base")  # Change model size as needed

# Load the M2M100 model and tokenizer for translation.
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
m2m100_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")

# -----------------------------------------------------------------------------
# Define Supported Languages (including Polish)
# -----------------------------------------------------------------------------
LANGUAGES = {
    "English": "en",
    "Spanish": "es",
    "French": "fr",
    "German": "de",
    "Chinese": "zh",
    "Polish": "pl"
}

# -----------------------------------------------------------------------------
# Main Processing Function
# -----------------------------------------------------------------------------
def translate_audio(audio, target_language):
    """
    Process the input audio, transcribe it using Whisper, and translate each segment
    to the chosen target language. Yields cumulative translation output for streaming.
    """
    if audio is None:
        yield "No audio provided."
        return

    # Transcribe the audio using Whisper (fp16=False for CPU compatibility)
    result = whisper_model.transcribe(audio, fp16=False)
    source_lang = result.get("language", "en")
    target_lang_code = LANGUAGES.get(target_language, "en")

    cumulative_translation = ""
    for segment in result.get("segments", []):
        segment_text = segment.get("text", "").strip()
        if segment_text == "":
            continue

        if source_lang == target_lang_code:
            translated_segment = segment_text
        else:
            # Set the source language for proper translation.
            tokenizer.src_lang = source_lang
            encoded = tokenizer(segment_text, return_tensors="pt")
            generated_tokens = m2m100_model.generate(
                **encoded,
                forced_bos_token_id=tokenizer.get_lang_id(target_lang_code)
            )
            translated_segment = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

        cumulative_translation += translated_segment + " "
        yield cumulative_translation.strip()

# -----------------------------------------------------------------------------
# Restart Function
# -----------------------------------------------------------------------------
def restart_recording():
    """
    Reset the recording section by clearing the audio input and the translation output.
    """
    return None, ""

# -----------------------------------------------------------------------------
# TTS Generation Function
# -----------------------------------------------------------------------------
def generate_tts(text, target_language):
    """
    Convert the translated text to speech using gTTS.
    Returns the filename of the generated audio file.
    """
    lang_code = LANGUAGES.get(target_language, "en")
    if not text or not text.strip():
        return None
    filename = f"tts_{uuid.uuid4().hex}.mp3"
    tts = gTTS(text=text, lang=lang_code)
    tts.save(filename)
    return filename

# -----------------------------------------------------------------------------
# Gradio Interface Definition
# -----------------------------------------------------------------------------
with gr.Blocks() as demo:
    gr.Markdown("# Real-time Speech Translation Demo")
    gr.Markdown(
        "Speak into the microphone and your speech will be transcribed and translated "
        "segment-by-segment. (Recording is limited to 15 seconds.)\n\n"
        "**Note:** Due to browser limitations, the translation starts after you stop recording. "
        "For a truly real-time experience, a continuous streaming solution would be required."
    )
    
    with gr.Row():
        # Use 'sources' (list) to specify that the microphone is an input source.
        audio_input = gr.Audio(
            sources=["microphone"],
            type="filepath",
            label="Record your speech (max 15 seconds)",
            elem_id="audio_input"
        )
        target_lang_dropdown = gr.Dropdown(
            choices=list(LANGUAGES.keys()),
            value="English",
            label="Select Target Language"
        )
    
    # Output textbox for displaying the (streaming) translation.
    output_text = gr.Textbox(label="Translated Text", lines=10)
    
    with gr.Row():
        restart_button = gr.Button("Restart Recording")
        read_aloud_button = gr.Button("Read Translated Text")
    
    # Audio output for the TTS result.
    tts_audio = gr.Audio(label="Translated Speech", type="filepath")
    
    # When new audio is recorded, stream the translation.
    audio_input.change(
        fn=translate_audio,
        inputs=[audio_input, target_lang_dropdown],
        outputs=output_text
    )
    
    # When the restart button is clicked, clear both the audio input and translation output.
    restart_button.click(
        fn=restart_recording,
        inputs=[],
        outputs=[audio_input, output_text]
    )
    
    # When the read aloud button is clicked, generate TTS from the translated text.
    read_aloud_button.click(
        fn=generate_tts,
        inputs=[output_text, target_lang_dropdown],
        outputs=tts_audio
    )

# Launch the Gradio app (suitable for Hugging Face Spaces).
demo.launch()