File size: 20,872 Bytes
b80af5b
 
9f6ac99
 
bdce857
 
 
 
0fc7323
 
 
 
 
 
b80af5b
0fc7323
bdce857
 
 
 
 
 
 
 
 
 
 
 
0fc7323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca454d
bdce857
0fc7323
 
bdce857
 
 
 
 
 
d5f0232
bdce857
 
 
 
 
9f6ac99
0fc7323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca454d
bdce857
 
 
0fc7323
bdce857
0fc7323
bdce857
 
 
 
0fc7323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdce857
 
0fc7323
bdce857
 
 
 
 
 
 
 
 
 
 
 
0fc7323
bdce857
 
 
 
 
 
645c015
bdce857
0fc7323
bdce857
 
0fc7323
bdce857
 
 
0fc7323
 
 
 
 
 
bdce857
 
0fc7323
bdce857
0fc7323
 
bdce857
 
 
 
 
 
 
0fc7323
 
 
bdce857
 
 
0fc7323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdce857
 
0fc7323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdce857
 
 
 
 
 
 
 
0fc7323
bdce857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fc7323
 
 
 
 
 
 
 
bdce857
0fc7323
bdce857
 
 
 
 
 
 
 
 
 
0fc7323
 
 
8b29c0d
bdce857
0fc7323
 
 
 
 
 
 
 
 
 
 
9f6ac99
0fc7323
 
 
 
 
bdce857
0fc7323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdce857
 
 
 
0fc7323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b80af5b
0fc7323
bdce857
 
0fc7323
bdce857
 
0fc7323
 
 
 
 
bdce857
 
6d5190c
bdce857
0fc7323
bdce857
0fc7323
 
 
 
 
 
 
bdce857
 
 
8b29c0d
0fc7323
 
 
 
8b29c0d
bdce857
 
0fc7323
 
 
 
 
 
 
 
 
 
 
 
bdce857
6d5190c
b80af5b
 
bdce857
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from langgraph.graph import StateGraph, END
from typing import TypedDict, List, Dict, Optional
from datetime import datetime
import json
import re
import numpy as np
from sentence_transformers import SentenceTransformer
import faiss
import pickle
import os

# Enhanced State Management with RAG
class MedicalState(TypedDict):
    patient_id: str
    conversation_history: List[Dict]
    symptoms: Dict[str, any]
    vital_questions_asked: List[str]
    medical_history: Dict
    current_medications: List[str]
    allergies: List[str]
    severity_scores: Dict[str, int]
    red_flags: List[str]
    assessment_complete: bool
    suggested_actions: List[str]
    consultation_stage: str
    retrieved_knowledge: List[Dict]
    confidence_scores: Dict[str, float]

# Medical Knowledge Base for RAG
MEDICAL_KNOWLEDGE_BASE = {
    "conditions": {
        "common_cold": {
            "symptoms": ["runny nose", "cough", "sneezing", "sore throat", "mild fever"],
            "treatment": "Rest, fluids, OTC pain relievers",
            "otc_medications": [
                {"name": "Acetaminophen", "dose": "500-1000mg every 4-6 hours", "max_daily": "3000mg"},
                {"name": "Ibuprofen", "dose": "200-400mg every 4-6 hours", "max_daily": "1200mg"}
            ],
            "home_remedies": ["Warm salt water gargle", "Honey and lemon tea", "Steam inhalation"],
            "when_to_seek_care": "If symptoms worsen after 7-10 days or fever above 101.3Β°F"
        },
        "headache": {
            "symptoms": ["head pain", "pressure", "throbbing"],
            "treatment": "Pain relief, rest, hydration",
            "otc_medications": [
                {"name": "Acetaminophen", "dose": "500-1000mg every 4-6 hours", "max_daily": "3000mg"},
                {"name": "Ibuprofen", "dose": "400-600mg every 6-8 hours", "max_daily": "1200mg"}
            ],
            "home_remedies": ["Cold or warm compress", "Rest in dark room", "Stay hydrated"],
            "when_to_seek_care": "Sudden severe headache, fever, neck stiffness, vision changes"
        },
        "stomach_pain": {
            "symptoms": ["abdominal pain", "nausea", "bloating", "cramps"],
            "treatment": "Bland diet, rest, hydration",
            "otc_medications": [
                {"name": "Pepto-Bismol", "dose": "525mg every 30 minutes as needed", "max_daily": "8 doses"},
                {"name": "TUMS", "dose": "2-4 tablets as needed", "max_daily": "15 tablets"}
            ],
            "home_remedies": ["BRAT diet", "Ginger tea", "Warm compress on stomach"],
            "when_to_seek_care": "Severe pain, fever, vomiting, blood in stool"
        }
    }
}

MEDICAL_CATEGORIES = {
    "respiratory": ["cough", "shortness of breath", "chest pain", "wheezing", "runny nose", "sore throat"],
    "gastrointestinal": ["nausea", "vomiting", "diarrhea", "stomach pain", "heartburn", "bloating"],
    "neurological": ["headache", "dizziness", "numbness", "tingling"],
    "musculoskeletal": ["joint pain", "muscle pain", "back pain", "stiffness"],
    "cardiovascular": ["chest pain", "palpitations", "swelling", "fatigue"],
    "dermatological": ["rash", "itching", "skin changes", "wounds"],
    "mental_health": ["anxiety", "depression", "sleep issues", "stress"]
}

RED_FLAGS = [
    "chest pain", "difficulty breathing", "severe headache", "high fever",
    "blood in stool", "blood in urine", "severe abdominal pain",
    "sudden vision changes", "loss of consciousness", "severe allergic reaction"
]

class SimpleRAGSystem:
    def __init__(self):
        self.knowledge_base = MEDICAL_KNOWLEDGE_BASE
        self.setup_simple_retrieval()
    
    def setup_simple_retrieval(self):
        """Setup simple keyword-based retrieval system"""
        self.symptom_to_condition = {}
        
        for condition, data in self.knowledge_base["conditions"].items():
            for symptom in data["symptoms"]:
                if symptom not in self.symptom_to_condition:
                    self.symptom_to_condition[symptom] = []
                self.symptom_to_condition[symptom].append(condition)
    
    def retrieve_relevant_conditions(self, symptoms: List[str]) -> List[Dict]:
        """Retrieve relevant medical conditions based on symptoms"""
        relevant_conditions = {}
        
        for symptom in symptoms:
            symptom_lower = symptom.lower()
            
            # Direct match
            if symptom_lower in self.symptom_to_condition:
                for condition in self.symptom_to_condition[symptom_lower]:
                    if condition not in relevant_conditions:
                        relevant_conditions[condition] = self.knowledge_base["conditions"][condition]
            
            # Partial match
            for kb_symptom, conditions in self.symptom_to_condition.items():
                if symptom_lower in kb_symptom or kb_symptom in symptom_lower:
                    for condition in conditions:
                        if condition not in relevant_conditions:
                            relevant_conditions[condition] = self.knowledge_base["conditions"][condition]
        
        return [{"condition": k, "data": v} for k, v in relevant_conditions.items()]

class EnhancedMedicalAssistant:
    def __init__(self):
        self.load_models()
        self.rag_system = SimpleRAGSystem()
        self.setup_langgraph()
        self.conversation_count = {}
    
    def load_models(self):
        """Load the AI models"""
        print("Loading models...")
        try:
            # Llama-2 for conversation
            self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
            
            self.model = AutoModelForCausalLM.from_pretrained(
                "meta-llama/Llama-2-7b-chat-hf",
                torch_dtype=torch.float16,
                device_map="auto"
            )
            
            # Meditron for medical suggestions
            self.meditron_tokenizer = AutoTokenizer.from_pretrained("epfl-llm/meditron-7b")
            if self.meditron_tokenizer.pad_token is None:
                self.meditron_tokenizer.pad_token = self.meditron_tokenizer.eos_token
                
            self.meditron_model = AutoModelForCausalLM.from_pretrained(
                "epfl-llm/meditron-7b",
                torch_dtype=torch.float16,
                device_map="auto"
            )
            print("Models loaded successfully!")
        except Exception as e:
            print(f"Error loading models: {e}")
            # Fallback - use only one model
            self.tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
            self.model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
            self.meditron_tokenizer = self.tokenizer
            self.meditron_model = self.model
    
    def setup_langgraph(self):
        """Setup simplified LangGraph workflow"""
        workflow = StateGraph(MedicalState)
        
        workflow.add_node("intake", self.patient_intake)
        workflow.add_node("generate_recommendations", self.generate_recommendations)
        workflow.add_node("emergency_triage", self.emergency_triage)
        
        workflow.set_entry_point("intake")
        workflow.add_conditional_edges(
            "intake",
            self.route_after_intake,
            {
                "emergency": "emergency_triage",
                "recommendations": "generate_recommendations"
            }
        )
        workflow.add_edge("generate_recommendations", END)
        workflow.add_edge("emergency_triage", END)
        
        self.workflow = workflow.compile()
    
    def patient_intake(self, state: MedicalState) -> MedicalState:
        """Enhanced patient intake with RAG"""
        last_message = state["conversation_history"][-1]["content"] if state["conversation_history"] else ""
        
        # Extract symptoms
        detected_symptoms = self.extract_symptoms(last_message)
        state["symptoms"].update(detected_symptoms)
        
        # Use RAG to get relevant medical knowledge
        if detected_symptoms:
            symptom_names = list(detected_symptoms.keys())
            relevant_conditions = self.rag_system.retrieve_relevant_conditions(symptom_names)
            state["retrieved_knowledge"] = relevant_conditions
        
        # Check for red flags
        red_flags = self.check_red_flags(last_message)
        state["red_flags"].extend(red_flags)
        
        # Determine consultation stage
        if red_flags:
            state["consultation_stage"] = "emergency"
        else:
            state["consultation_stage"] = "recommendations"
        
        return state
    
    def generate_recommendations(self, state: MedicalState) -> MedicalState:
        """Generate RAG-enhanced recommendations"""
        # Create structured recommendations from RAG knowledge
        recommendations = self.create_structured_recommendations(state)
        state["suggested_actions"] = recommendations
        return state
    
    def create_structured_recommendations(self, state: MedicalState) -> List[str]:
        """Create structured recommendations using RAG knowledge"""
        recommendations = []
        
        if not state["retrieved_knowledge"]:
            recommendations.append("I need more specific information about your symptoms to provide targeted recommendations.")
            return recommendations
        
        # Process each relevant condition
        for knowledge_item in state["retrieved_knowledge"][:2]:  # Limit to top 2 conditions
            condition = knowledge_item["condition"]
            data = knowledge_item["data"]
            
            # Format condition information
            condition_info = f"\n**Possible Condition: {condition.replace('_', ' ').title()}**\n"
            
            # Add medications
            if "otc_medications" in data:
                condition_info += "\n**πŸ’Š Over-the-Counter Medications:**\n"
                for med in data["otc_medications"]:
                    condition_info += f"β€’ **{med['name']}**: {med['dose']} (Max daily: {med['max_daily']})\n"
            
            # Add home remedies
            if "home_remedies" in data:
                condition_info += "\n**🏠 Home Remedies:**\n"
                for remedy in data["home_remedies"]:
                    condition_info += f"β€’ {remedy}\n"
            
            # Add when to seek care
            if "when_to_seek_care" in data:
                condition_info += f"\n**⚠️ Seek Medical Care If:** {data['when_to_seek_care']}\n"
            
            recommendations.append(condition_info)
        
        # Add general advice
        recommendations.append("""
**πŸ“‹ General Recommendations:**
β€’ Monitor your symptoms for any changes
β€’ Stay hydrated and get adequate rest
β€’ Follow medication instructions carefully
β€’ Don't exceed recommended dosages

**🚨 Emergency Warning Signs:**
β€’ Severe worsening of symptoms
β€’ High fever (>101.3Β°F/38.5Β°C)
β€’ Difficulty breathing
β€’ Severe pain
β€’ Signs of dehydration
        """)
        
        return recommendations
    
    def emergency_triage(self, state: MedicalState) -> MedicalState:
        """Handle emergency situations"""
        emergency_response = f"""
🚨 **URGENT MEDICAL ATTENTION NEEDED** 🚨

Based on your symptoms, I strongly recommend seeking immediate medical care because you mentioned: {', '.join(state['red_flags'])}

**Immediate Actions:**
β€’ Go to the nearest emergency room, OR
β€’ Call emergency services (911), OR  
β€’ Contact your doctor immediately

**Why This is Urgent:**
These symptoms can indicate serious conditions that require professional medical evaluation and treatment.

⚠️ **Disclaimer:** This is not a medical diagnosis, but these symptoms warrant immediate professional assessment.
        """
        
        state["suggested_actions"] = [emergency_response]
        return state
    
    def route_after_intake(self, state: MedicalState):
        """Route decision after intake"""
        if state["red_flags"]:
            return "emergency"
        else:
            return "recommendations"
    
    def extract_symptoms(self, text: str) -> Dict:
        """Extract and categorize symptoms from patient text"""
        symptoms = {}
        text_lower = text.lower()
        
        for category, symptom_list in MEDICAL_CATEGORIES.items():
            for symptom in symptom_list:
                if symptom in text_lower:
                    symptoms[symptom] = {
                        "category": category,
                        "mentioned_at": datetime.now().isoformat(),
                        "context": text
                    }
        
        return symptoms
    
    def check_red_flags(self, text: str) -> List[str]:
        """Check for emergency red flags"""
        found_flags = []
        text_lower = text.lower()
        
        for flag in RED_FLAGS:
            if flag in text_lower:
                found_flags.append(flag)
        
        return found_flags
    
    def generate_response(self, message: str, history: List) -> str:
        """Main response generation function"""
        session_id = "default_session"
        
        # Track conversation count
        if session_id not in self.conversation_count:
            self.conversation_count[session_id] = 0
        self.conversation_count[session_id] += 1
        
        # Initialize state
        state = MedicalState(
            patient_id=session_id,
            conversation_history=history + [{"role": "user", "content": message}],
            symptoms={},
            vital_questions_asked=[],
            medical_history={},
            current_medications=[],
            allergies=[],
            severity_scores={},
            red_flags=[],
            assessment_complete=False,
            suggested_actions=[],
            consultation_stage="intake",
            retrieved_knowledge=[],
            confidence_scores={}
        )
        
        # For first few messages, do conversational intake
        if self.conversation_count[session_id] <= 3:
            return self.generate_conversational_response(message, history)
        
        # After gathering info, run workflow for recommendations
        try:
            result = self.workflow.invoke(state)
            return self.format_final_response(result)
        except Exception as e:
            print(f"Workflow error: {e}")
            return self.generate_conversational_response(message, history)
    
    def generate_conversational_response(self, message: str, history: List) -> str:
        """Generate conversational response for intake phase"""
        # Extract symptoms for context
        symptoms = self.extract_symptoms(message)
        red_flags = self.check_red_flags(message)
        
        # Handle emergencies immediately
        if red_flags:
            return f"""
🚨 **URGENT MEDICAL ATTENTION NEEDED** 🚨

I notice you mentioned: {', '.join(red_flags)}

Please seek immediate medical care:
β€’ Go to the nearest emergency room
β€’ Call emergency services (911)  
β€’ Contact your doctor immediately

These symptoms require professional medical evaluation right away.
            """
        
        # Generate contextual questions based on symptoms
        if symptoms:
            symptom_names = list(symptoms.keys())
            prompt = f"""
You are a caring medical assistant. The patient mentioned these symptoms: {', '.join(symptom_names)}.

Respond empathetically and ask 1-2 relevant follow-up questions about:
- How long they've had these symptoms
- Severity (mild, moderate, severe)
- What makes it better or worse
- Any other symptoms they're experiencing

Be professional, caring, and concise. Don't provide treatment advice yet.
            """
        else:
            prompt = f"""
You are a caring medical assistant. The patient said: "{message}"

Respond empathetically and ask relevant questions to understand their health concern better.
Be professional and caring.
            """
        
        return self.generate_llama_response(prompt)
    
    def generate_llama_response(self, prompt: str) -> str:
        """Generate response using Llama-2 with better formatting"""
        try:
            formatted_prompt = f"<s>[INST] {prompt} [/INST]"
            inputs = self.tokenizer(formatted_prompt, return_tensors="pt", truncation=True, max_length=512)
            
            if torch.cuda.is_available():
                inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
            
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=200,
                    temperature=0.7,
                    top_p=0.9,
                    do_sample=True,
                    pad_token_id=self.tokenizer.eos_token_id
                )
            
            # Decode response
            response = self.tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
            
            # Clean up the response
            response = response.split('</s>')[0].strip()
            response = response.replace('<s>', '').replace('[INST]', '').replace('[/INST]', '').strip()
            
            # Remove any XML-like tags
            response = re.sub(r'<[^>]+>', '', response)
            
            return response if response else "I understand your concern. Can you tell me more about what you're experiencing?"
            
        except Exception as e:
            print(f"Error generating response: {e}")
            return "I understand your concern. Can you tell me more about your symptoms?"
    
    def format_final_response(self, state: MedicalState) -> str:
        """Format the final response with recommendations"""
        if state["consultation_stage"] == "emergency":
            return state["suggested_actions"][0] if state["suggested_actions"] else "Please seek immediate medical attention."
        
        # Format recommendations nicely
        if state["suggested_actions"]:
            response = "## πŸ₯ Medical Assessment & Recommendations\n\n"
            response += "Based on our conversation, here's what I recommend:\n"
            
            for action in state["suggested_actions"]:
                response += f"{action}\n"
            
            response += "\n---\n"
            response += "**Important Disclaimer:** I'm an AI assistant providing general health information. "
            response += "This is not a substitute for professional medical advice, diagnosis, or treatment. "
            response += "Always consult with qualified healthcare providers for medical concerns."
            
            return response
        else:
            return "Please provide more details about your symptoms so I can offer better guidance."

# Initialize the medical assistant
medical_assistant = EnhancedMedicalAssistant()

@spaces.GPU  
def chat_interface(message, history):
    """Gradio chat interface"""
    try:
        return medical_assistant.generate_response(message, history)
    except Exception as e:
        print(f"Chat interface error: {e}")
        return f"I apologize, but I encountered an error. Please try rephrasing your question. Error: {str(e)}"

# Create Gradio interface
demo = gr.ChatInterface(
    fn=chat_interface,
    title="πŸ₯ Medical AI Assistant with medRAG",
    description="""
    I'm an AI medical assistant powered by medical knowledge retrieval (medRAG). 
    I can help assess your symptoms and provide evidence-based recommendations.
    
    **How it works:**
    1. Tell me about your symptoms
    2. I'll ask follow-up questions  
    3. I'll provide personalized recommendations based on medical knowledge
    
    ⚠️ **Important**: I'm not a replacement for professional medical care. Always consult healthcare providers for serious concerns.
    """,
    examples=[
        "I have a bad cough and sore throat",
        "I've been having headaches for the past few days", 
        "My stomach has been hurting after meals",
        "I have chest pain and trouble breathing"
    ],
    theme="soft",
    css="""
    .message.user { 
        background-color: #e3f2fd; 
        border-radius: 10px;
        padding: 10px;
        margin: 5px;
    }
    .message.bot { 
        background-color: #f1f8e9; 
        border-radius: 10px;
        padding: 10px;
        margin: 5px;
    }
    """
)

if __name__ == "__main__":
    demo.launch(share=True)