Spaces:
Sleeping
Sleeping
File size: 7,531 Bytes
5067011 7dd1c93 c66e1bd 7dd1c93 71bcd31 1cb1a8e 71bcd31 1cb1a8e afe76d4 6e237a4 1cb1a8e afe76d4 1cb1a8e afe76d4 1728da9 1cb1a8e 7dd1c93 5067011 1cb1a8e c66e1bd 1728da9 c66e1bd 1cb1a8e c66e1bd 1cb1a8e c66e1bd 1cb1a8e afe76d4 c66e1bd 1cb1a8e c66e1bd 1cb1a8e c66e1bd 1cb1a8e c66e1bd 1cb1a8e c66e1bd 1cb1a8e c66e1bd 1cb1a8e c66e1bd 1cb1a8e c66e1bd 1728da9 7dd1c93 5067011 1cb1a8e 5067011 c66e1bd 1cb1a8e c66e1bd 5067011 1728da9 1cb1a8e 5067011 1728da9 1cb1a8e 7dd1c93 afe76d4 1cb1a8e afe76d4 1cb1a8e 5067011 1cb1a8e 5067011 1cb1a8e 5067011 c4447f4 afe76d4 6d5190c 5067011 1cb1a8e 8b29c0d 1cb1a8e 8b29c0d afe76d4 6d5190c b80af5b 7dd1c93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
# Model configuration - Using only Me-LLaMA 13B-chat
ME_LLAMA_MODEL = "clinicalnlplab/me-llama-13b-chat"
# System prompts for different phases
CONSULTATION_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
Respond empathetically and clearly. Always be professional and thorough."""
MEDICINE_PROMPT = """You are a specialized medical assistant. Based on the patient information gathered, provide:
1. One specific over-the-counter medicine with proper adult dosing instructions
2. One practical home remedy that might help
3. Clear guidance on when to seek professional medical care
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
Patient information: {patient_info}"""
# Global variables
me_llama_model = None
me_llama_tokenizer = None
conversation_turns = 0
patient_data = []
def build_me_llama_prompt(system_prompt, history, user_input):
"""Format the conversation for Me-LLaMA chat model."""
prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
# Add conversation history
for user_msg, assistant_msg in history:
prompt += f"{user_msg} [/INST] {assistant_msg} </s><s>[INST] "
# Add the current user input
prompt += f"{user_input} [/INST] "
return prompt
@spaces.GPU
def load_model_if_needed():
"""Load Me-LLaMA model only when GPU is available."""
global me_llama_model, me_llama_tokenizer
if me_llama_model is None:
print("Loading Me-LLaMA 13B-chat model...")
me_llama_tokenizer = AutoTokenizer.from_pretrained(ME_LLAMA_MODEL)
me_llama_model = AutoModelForCausalLM.from_pretrained(
ME_LLAMA_MODEL,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
print("Me-LLaMA 13B-chat model loaded successfully!")
@spaces.GPU
def generate_medicine_suggestions(patient_info):
"""Use Me-LLaMA to generate medicine and remedy suggestions."""
load_model_if_needed()
# Create a simple prompt for medicine suggestions
prompt = f"<s>[INST] {MEDICINE_PROMPT.format(patient_info=patient_info)} [/INST] "
inputs = me_llama_tokenizer(prompt, return_tensors="pt")
# Move inputs to the same device as the model
if torch.cuda.is_available():
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = me_llama_model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=300,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=me_llama_tokenizer.eos_token_id
)
suggestion = me_llama_tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
return suggestion
@spaces.GPU
def generate_response(message, history):
"""Generate response using only Me-LLaMA for both consultation and medicine suggestions."""
global conversation_turns, patient_data
# Load model if needed
load_model_if_needed()
# Track conversation turns
conversation_turns += 1
# Store patient data
patient_data.append(message)
# Phase 1-3: Information gathering
if conversation_turns < 4:
# Build consultation prompt
prompt = build_me_llama_prompt(CONSULTATION_PROMPT, history, message)
inputs = me_llama_tokenizer(prompt, return_tensors="pt")
# Move inputs to the same device as the model
if torch.cuda.is_available():
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
# Generate consultation response
with torch.no_grad():
outputs = me_llama_model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=400,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=me_llama_tokenizer.eos_token_id
)
# Decode response
full_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
return response
# Phase 4+: Summary and medicine suggestions
else:
# First, get summary from consultation
summary_prompt = build_me_llama_prompt(
CONSULTATION_PROMPT + "\n\nNow summarize what you've learned and suggest when professional care may be needed.",
history,
message
)
inputs = me_llama_tokenizer(summary_prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
# Generate summary
with torch.no_grad():
outputs = me_llama_model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=400,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=me_llama_tokenizer.eos_token_id
)
summary_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
summary = summary_response.split('[/INST]')[-1].split('</s>')[0].strip()
# Then get medicine suggestions using the same model
full_patient_info = "\n".join(patient_data) + f"\n\nMedical Summary: {summary}"
medicine_suggestions = generate_medicine_suggestions(full_patient_info)
# Combine both responses
final_response = (
f"**MEDICAL SUMMARY:**\n{summary}\n\n"
f"**MEDICATION AND HOME CARE SUGGESTIONS:**\n{medicine_suggestions}\n\n"
f"**DISCLAIMER:** This is AI-generated advice for informational purposes only. Please consult a licensed healthcare provider for proper medical diagnosis and treatment."
)
return final_response
# Create the Gradio interface
demo = gr.ChatInterface(
fn=generate_response,
title="🏥 Complete Medical Assistant - Me-LLaMA 13B",
description="Comprehensive medical consultation powered by Me-LLaMA 13B-chat. One model handles both consultation and medicine suggestions. Tell me about your symptoms!",
examples=[
"I have a persistent cough and sore throat for 3 days",
"I've been having severe headaches and feel dizzy",
"My stomach hurts and I feel nauseous after eating"
],
theme="soft"
)
if __name__ == "__main__":
demo.launch()
|