File size: 7,531 Bytes
5067011
7dd1c93
c66e1bd
7dd1c93
71bcd31
1cb1a8e
 
71bcd31
1cb1a8e
 
afe76d4
 
 
 
 
 
 
 
 
 
6e237a4
1cb1a8e
afe76d4
 
 
1cb1a8e
afe76d4
1728da9
1cb1a8e
 
 
 
 
7dd1c93
 
5067011
1cb1a8e
 
c66e1bd
 
 
 
 
 
 
 
 
 
1728da9
c66e1bd
1cb1a8e
 
 
 
 
 
 
 
 
c66e1bd
1cb1a8e
 
c66e1bd
1cb1a8e
afe76d4
c66e1bd
1cb1a8e
 
 
c66e1bd
1cb1a8e
 
 
 
c66e1bd
 
 
1cb1a8e
c66e1bd
 
1cb1a8e
c66e1bd
 
1cb1a8e
c66e1bd
 
 
1cb1a8e
c66e1bd
 
1cb1a8e
c66e1bd
1728da9
7dd1c93
5067011
1cb1a8e
5067011
c66e1bd
1cb1a8e
 
c66e1bd
 
5067011
1728da9
1cb1a8e
5067011
1728da9
1cb1a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd1c93
afe76d4
1cb1a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe76d4
1cb1a8e
 
 
 
 
 
 
 
5067011
1cb1a8e
 
 
5067011
1cb1a8e
5067011
c4447f4
afe76d4
6d5190c
5067011
1cb1a8e
 
8b29c0d
1cb1a8e
 
 
8b29c0d
afe76d4
6d5190c
b80af5b
 
7dd1c93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces

# Model configuration - Using only Me-LLaMA 13B-chat
ME_LLAMA_MODEL = "clinicalnlplab/me-llama-13b-chat"

# System prompts for different phases
CONSULTATION_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
Respond empathetically and clearly. Always be professional and thorough."""

MEDICINE_PROMPT = """You are a specialized medical assistant. Based on the patient information gathered, provide:
1. One specific over-the-counter medicine with proper adult dosing instructions
2. One practical home remedy that might help
3. Clear guidance on when to seek professional medical care

Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.

Patient information: {patient_info}"""

# Global variables
me_llama_model = None
me_llama_tokenizer = None
conversation_turns = 0
patient_data = []

def build_me_llama_prompt(system_prompt, history, user_input):
    """Format the conversation for Me-LLaMA chat model."""
    prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
    
    # Add conversation history
    for user_msg, assistant_msg in history:
        prompt += f"{user_msg} [/INST] {assistant_msg} </s><s>[INST] "
    
    # Add the current user input
    prompt += f"{user_input} [/INST] "
    
    return prompt

@spaces.GPU
def load_model_if_needed():
    """Load Me-LLaMA model only when GPU is available."""
    global me_llama_model, me_llama_tokenizer
    
    if me_llama_model is None:
        print("Loading Me-LLaMA 13B-chat model...")
        me_llama_tokenizer = AutoTokenizer.from_pretrained(ME_LLAMA_MODEL)
        me_llama_model = AutoModelForCausalLM.from_pretrained(
            ME_LLAMA_MODEL,
            torch_dtype=torch.float16,
            device_map="auto",
            trust_remote_code=True
        )
        print("Me-LLaMA 13B-chat model loaded successfully!")

@spaces.GPU
def generate_medicine_suggestions(patient_info):
    """Use Me-LLaMA to generate medicine and remedy suggestions."""
    load_model_if_needed()
    
    # Create a simple prompt for medicine suggestions
    prompt = f"<s>[INST] {MEDICINE_PROMPT.format(patient_info=patient_info)} [/INST] "
    
    inputs = me_llama_tokenizer(prompt, return_tensors="pt")
    
    # Move inputs to the same device as the model
    if torch.cuda.is_available():
        inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
    
    with torch.no_grad():
        outputs = me_llama_model.generate(
            inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            max_new_tokens=300,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=me_llama_tokenizer.eos_token_id
        )
    
    suggestion = me_llama_tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
    return suggestion

@spaces.GPU
def generate_response(message, history):
    """Generate response using only Me-LLaMA for both consultation and medicine suggestions."""
    global conversation_turns, patient_data
    
    # Load model if needed
    load_model_if_needed()
    
    # Track conversation turns
    conversation_turns += 1
    
    # Store patient data
    patient_data.append(message)
    
    # Phase 1-3: Information gathering
    if conversation_turns < 4:
        # Build consultation prompt
        prompt = build_me_llama_prompt(CONSULTATION_PROMPT, history, message)
        
        inputs = me_llama_tokenizer(prompt, return_tensors="pt")
        
        # Move inputs to the same device as the model
        if torch.cuda.is_available():
            inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
        
        # Generate consultation response
        with torch.no_grad():
            outputs = me_llama_model.generate(
                inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                max_new_tokens=400,
                temperature=0.7,
                top_p=0.9,
                do_sample=True,
                pad_token_id=me_llama_tokenizer.eos_token_id
            )
        
        # Decode response
        full_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
        response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
        
        return response
    
    # Phase 4+: Summary and medicine suggestions
    else:
        # First, get summary from consultation
        summary_prompt = build_me_llama_prompt(
            CONSULTATION_PROMPT + "\n\nNow summarize what you've learned and suggest when professional care may be needed.",
            history, 
            message
        )
        
        inputs = me_llama_tokenizer(summary_prompt, return_tensors="pt")
        
        if torch.cuda.is_available():
            inputs = {k: v.to(me_llama_model.device) for k, v in inputs.items()}
        
        # Generate summary
        with torch.no_grad():
            outputs = me_llama_model.generate(
                inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                max_new_tokens=400,
                temperature=0.7,
                top_p=0.9,
                do_sample=True,
                pad_token_id=me_llama_tokenizer.eos_token_id
            )
        
        summary_response = me_llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
        summary = summary_response.split('[/INST]')[-1].split('</s>')[0].strip()
        
        # Then get medicine suggestions using the same model
        full_patient_info = "\n".join(patient_data) + f"\n\nMedical Summary: {summary}"
        medicine_suggestions = generate_medicine_suggestions(full_patient_info)
        
        # Combine both responses
        final_response = (
            f"**MEDICAL SUMMARY:**\n{summary}\n\n"
            f"**MEDICATION AND HOME CARE SUGGESTIONS:**\n{medicine_suggestions}\n\n"
            f"**DISCLAIMER:** This is AI-generated advice for informational purposes only. Please consult a licensed healthcare provider for proper medical diagnosis and treatment."
        )
        
        return final_response

# Create the Gradio interface
demo = gr.ChatInterface(
    fn=generate_response,
    title="🏥 Complete Medical Assistant - Me-LLaMA 13B",
    description="Comprehensive medical consultation powered by Me-LLaMA 13B-chat. One model handles both consultation and medicine suggestions. Tell me about your symptoms!",
    examples=[
        "I have a persistent cough and sore throat for 3 days",
        "I've been having severe headaches and feel dizzy",
        "My stomach hurts and I feel nauseous after eating"
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()