File size: 9,215 Bytes
b80af5b
71bcd31
9f6ac99
 
bdce857
71bcd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdce857
 
71bcd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdce857
71bcd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdce857
71bcd31
 
 
 
9f6ac99
71bcd31
 
bdce857
71bcd31
 
 
 
 
 
 
0fc7323
71bcd31
b80af5b
71bcd31
6d5190c
71bcd31
 
 
8b29c0d
71bcd31
 
 
8b29c0d
71bcd31
6d5190c
b80af5b
 
71bcd31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from langgraph.graph import StateGraph, END
from typing import TypedDict, List, Tuple
import json

# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"

SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
Respond empathetically and clearly. Always be professional and thorough."""

MEDITRON_PROMPT = """<|im_start|>system
You are a specialized medical assistant focusing ONLY on suggesting over-the-counter medicines and home remedies based on patient information.
Based on the following patient information, provide ONLY:
1. One specific over-the-counter medicine with proper adult dosing instructions
2. One practical home remedy that might help
3. Clear guidance on when to seek professional medical care
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
<|im_end|>
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""

# Load models
print("Loading Llama-2 model...")
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
model = AutoModelForCausalLM.from_pretrained(
    LLAMA_MODEL,
    torch_dtype=torch.float16,
    device_map="auto"
)
print("Llama-2 model loaded successfully!")

print("Loading Meditron model...")
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
meditron_model = AutoModelForCausalLM.from_pretrained(
    MEDITRON_MODEL,
    torch_dtype=torch.float16,
    device_map="auto"
)
print("Meditron model loaded successfully!")

# Define the state for LangGraph
class ConversationState(TypedDict):
    messages: List[str]
    history: List[Tuple[str, str]]
    current_message: str
    conversation_turns: int
    patient_data: List[str]
    llama_response: str
    final_response: str
    should_get_suggestions: bool

def build_llama2_prompt(system_prompt, history, user_input):
    """Format the conversation history and user input for Llama-2 chat models."""
    prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
    
    # Add conversation history
    for user_msg, assistant_msg in history:
        prompt += f"{user_msg} [/INST] {assistant_msg} </s><s>[INST] "
    
    # Add the current user input
    prompt += f"{user_input} [/INST] "
    
    return prompt

def get_meditron_suggestions(patient_info):
    """Use Meditron model to generate medicine and remedy suggestions."""
    prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
    inputs = meditron_tokenizer(prompt, return_tensors="pt").to(meditron_model.device)
    
    with torch.no_grad():
        outputs = meditron_model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=256,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )
    
    suggestion = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
    return suggestion

# LangGraph Node Functions
def initialize_conversation(state: ConversationState) -> ConversationState:
    """Initialize or update conversation state."""
    # Update conversation turns
    state["conversation_turns"] = state.get("conversation_turns", 0) + 1
    
    # Add current message to patient data
    if "patient_data" not in state:
        state["patient_data"] = []
    state["patient_data"].append(state["current_message"])
    
    # Determine if we should get suggestions (after 4 turns)
    state["should_get_suggestions"] = state["conversation_turns"] >= 4
    
    return state

def generate_llama_response(state: ConversationState) -> ConversationState:
    """Generate response using Llama-2 model."""
    # Build the prompt with proper Llama-2 formatting
    prompt = build_llama2_prompt(SYSTEM_PROMPT, state["history"], state["current_message"])
    
    # Add summarization instruction after 4 turns
    if state["conversation_turns"] >= 4:
        prompt = prompt.replace("[/INST] ", "[/INST] Now summarize what you've learned and suggest when professional care may be needed. ")
    
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    # Generate the Llama-2 response
    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
    
    # Decode and extract Llama-2's response
    full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
    llama_response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
    
    state["llama_response"] = llama_response
    return state

def generate_medicine_suggestions(state: ConversationState) -> ConversationState:
    """Generate medicine suggestions using Meditron model."""
    # Collect full patient conversation
    full_patient_info = "\n".join(state["patient_data"]) + "\n\nSummary: " + state["llama_response"]
    
    # Get medicine suggestions
    medicine_suggestions = get_meditron_suggestions(full_patient_info)
    
    # Format final response
    final_response = (
        f"{state['llama_response']}\n\n"
        f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
        f"{medicine_suggestions}"
    )
    
    state["final_response"] = final_response
    return state

def finalize_response(state: ConversationState) -> ConversationState:
    """Finalize the response without medicine suggestions."""
    state["final_response"] = state["llama_response"]
    return state

def should_get_suggestions(state: ConversationState) -> str:
    """Conditional edge to determine next step."""
    if state["should_get_suggestions"]:
        return "get_suggestions"
    else:
        return "finalize"

# Create the LangGraph workflow
def create_medical_workflow():
    """Create the LangGraph workflow for medical assistant."""
    workflow = StateGraph(ConversationState)
    
    # Add nodes
    workflow.add_node("initialize", initialize_conversation)
    workflow.add_node("generate_llama", generate_llama_response)
    workflow.add_node("get_suggestions", generate_medicine_suggestions)
    workflow.add_node("finalize", finalize_response)
    
    # Define the flow
    workflow.set_entry_point("initialize")
    workflow.add_edge("initialize", "generate_llama")
    workflow.add_conditional_edges(
        "generate_llama",
        should_get_suggestions,
        {
            "get_suggestions": "get_suggestions",
            "finalize": "finalize"
        }
    )
    workflow.add_edge("get_suggestions", END)
    workflow.add_edge("finalize", END)
    
    return workflow.compile()

# Initialize the workflow
medical_workflow = create_medical_workflow()

# Conversation state tracking (for Gradio session management)
conversation_states = {}

@spaces.GPU
def generate_response(message, history):
    """Generate a response using the LangGraph workflow."""
    session_id = "default-session"
    
    # Initialize or get existing conversation state
    if session_id not in conversation_states:
        conversation_states[session_id] = {
            "messages": [],
            "history": [],
            "conversation_turns": 0,
            "patient_data": []
        }
    
    # Update state with current message and history
    state = conversation_states[session_id].copy()
    state["current_message"] = message
    state["history"] = history
    
    # Run the workflow
    result = medical_workflow.invoke(state)
    
    # Update the stored conversation state
    conversation_states[session_id] = {
        "messages": result["messages"] if "messages" in result else [],
        "history": history,
        "conversation_turns": result["conversation_turns"],
        "patient_data": result["patient_data"]
    }
    
    return result["final_response"]

# Create the Gradio interface
demo = gr.ChatInterface(
    fn=generate_response,
    title="Medical Assistant with LangGraph & Medicine Suggestions",
    description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies using an AI workflow.",
    examples=[
        "I have a cough and my throat hurts",
        "I've been having headaches for a week",
        "My stomach has been hurting since yesterday"
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()