File size: 16,824 Bytes
b80af5b
 
9f6ac99
 
bdce857
 
 
 
b80af5b
bdce857
 
 
 
 
 
 
 
 
 
 
 
 
 
aca454d
bdce857
 
 
 
 
 
 
 
 
 
d5f0232
bdce857
 
 
 
 
9f6ac99
bdce857
 
 
 
 
 
 
 
 
aca454d
bdce857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645c015
bdce857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645c015
bdce857
 
 
 
 
 
 
 
 
 
 
645c015
bdce857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b29c0d
bdce857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f6ac99
bdce857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f6ac99
bdce857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b80af5b
bdce857
 
 
 
 
 
 
 
 
6d5190c
bdce857
 
 
 
 
 
 
 
8b29c0d
bdce857
 
 
 
8b29c0d
bdce857
 
 
 
 
6d5190c
b80af5b
 
bdce857
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from langgraph.graph import StateGraph, END
from typing import TypedDict, List, Dict, Optional
from datetime import datetime
import json

# Enhanced State Management
class MedicalState(TypedDict):
    patient_id: str
    conversation_history: List[Dict]
    symptoms: Dict[str, any]
    vital_questions_asked: List[str]
    medical_history: Dict
    current_medications: List[str]
    allergies: List[str]
    severity_scores: Dict[str, int]
    red_flags: List[str]
    assessment_complete: bool
    suggested_actions: List[str]
    consultation_stage: str  # intake, assessment, summary, recommendations

# Medical Knowledge Base
MEDICAL_CATEGORIES = {
    "respiratory": ["cough", "shortness of breath", "chest pain", "wheezing"],
    "gastrointestinal": ["nausea", "vomiting", "diarrhea", "stomach pain", "heartburn"],
    "neurological": ["headache", "dizziness", "numbness", "tingling"],
    "musculoskeletal": ["joint pain", "muscle pain", "back pain", "stiffness"],
    "cardiovascular": ["chest pain", "palpitations", "swelling", "fatigue"],
    "dermatological": ["rash", "itching", "skin changes", "wounds"],
    "mental_health": ["anxiety", "depression", "sleep issues", "stress"]
}

RED_FLAGS = [
    "chest pain", "difficulty breathing", "severe headache", "high fever",
    "blood in stool", "blood in urine", "severe abdominal pain",
    "sudden vision changes", "loss of consciousness", "severe allergic reaction"
]

VITAL_QUESTIONS = {
    "symptom_onset": "When did your symptoms first start?",
    "severity": "On a scale of 1-10, how severe would you rate your symptoms?",
    "triggers": "What makes your symptoms better or worse?",
    "associated_symptoms": "Are you experiencing any other symptoms?",
    "medical_history": "Do you have any chronic medical conditions?",
    "medications": "Are you currently taking any medications?",
    "allergies": "Do you have any known allergies?"
}

class EnhancedMedicalAssistant:
    def __init__(self):
        self.load_models()
        self.setup_langgraph()
    
    def load_models(self):
        """Load the AI models"""
        print("Loading models...")
        # Llama-2 for conversation
        self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
        self.model = AutoModelForCausalLM.from_pretrained(
            "meta-llama/Llama-2-7b-chat-hf",
            torch_dtype=torch.float16,
            device_map="auto"
        )
        
        # Meditron for medical suggestions
        self.meditron_tokenizer = AutoTokenizer.from_pretrained("epfl-llm/meditron-7b")
        self.meditron_model = AutoModelForCausalLM.from_pretrained(
            "epfl-llm/meditron-7b",
            torch_dtype=torch.float16,
            device_map="auto"
        )
        print("Models loaded successfully!")
    
    def setup_langgraph(self):
        """Setup LangGraph workflow"""
        workflow = StateGraph(MedicalState)
        
        # Add nodes
        workflow.add_node("intake", self.patient_intake)
        workflow.add_node("symptom_assessment", self.assess_symptoms)
        workflow.add_node("risk_evaluation", self.evaluate_risks)
        workflow.add_node("generate_recommendations", self.generate_recommendations)
        workflow.add_node("emergency_triage", self.emergency_triage)
        
        # Define edges
        workflow.set_entry_point("intake")
        workflow.add_conditional_edges(
            "intake",
            self.route_after_intake,
            {
                "continue_assessment": "symptom_assessment",
                "emergency": "emergency_triage",
                "complete": "generate_recommendations"
            }
        )
        workflow.add_edge("symptom_assessment", "risk_evaluation")
        workflow.add_conditional_edges(
            "risk_evaluation",
            self.route_after_risk_eval,
            {
                "emergency": "emergency_triage",
                "continue": "generate_recommendations",
                "need_more_info": "symptom_assessment"
            }
        )
        workflow.add_edge("generate_recommendations", END)
        workflow.add_edge("emergency_triage", END)
        
        self.workflow = workflow.compile()
    
    def patient_intake(self, state: MedicalState) -> MedicalState:
        """Initial patient intake and basic information gathering"""
        last_message = state["conversation_history"][-1]["content"] if state["conversation_history"] else ""
        
        # Extract symptoms and categorize them
        detected_symptoms = self.extract_symptoms(last_message)
        state["symptoms"].update(detected_symptoms)
        
        # Check for red flags
        red_flags = self.check_red_flags(last_message)
        if red_flags:
            state["red_flags"].extend(red_flags)
        
        # Determine what vital questions still need to be asked
        missing_questions = self.get_missing_vital_questions(state)
        
        if missing_questions and len(state["conversation_history"]) < 6:
            state["consultation_stage"] = "intake"
            return state
        else:
            state["consultation_stage"] = "assessment"
            return state
    
    def assess_symptoms(self, state: MedicalState) -> MedicalState:
        """Detailed symptom assessment"""
        # Analyze symptom patterns and severity
        for symptom, details in state["symptoms"].items():
            if "severity" not in details:
                # Need to ask about severity
                state["consultation_stage"] = "assessment"
                return state
        
        state["assessment_complete"] = True
        return state
    
    def evaluate_risks(self, state: MedicalState) -> MedicalState:
        """Evaluate patient risks and urgency"""
        risk_score = 0
        
        # Check red flags
        if state["red_flags"]:
            risk_score += len(state["red_flags"]) * 3
        
        # Check severity scores
        for severity in state["severity_scores"].values():
            if severity >= 8:
                risk_score += 2
            elif severity >= 6:
                risk_score += 1
        
        # Check symptom duration and progression
        # (Implementation would analyze timeline)
        
        if risk_score >= 5:
            state["consultation_stage"] = "emergency"
        else:
            state["consultation_stage"] = "recommendations"
        
        return state
    
    def generate_recommendations(self, state: MedicalState) -> MedicalState:
        """Generate treatment recommendations and care suggestions"""
        patient_summary = self.create_patient_summary(state)
        
        # Use Meditron for medical recommendations
        recommendations = self.get_meditron_recommendations(patient_summary)
        state["suggested_actions"] = recommendations
        
        return state
    
    def emergency_triage(self, state: MedicalState) -> MedicalState:
        """Handle emergency situations"""
        emergency_response = {
            "urgent_care_needed": True,
            "recommended_action": "Seek immediate medical attention",
            "reasons": state["red_flags"],
            "instructions": "Go to the nearest emergency room or call emergency services"
        }
        state["suggested_actions"] = [emergency_response]
        return state
    
    def route_after_intake(self, state: MedicalState):
        """Route decision after intake"""
        if state["red_flags"]:
            return "emergency"
        elif len(state["vital_questions_asked"]) < 5:
            return "continue_assessment"
        else:
            return "complete"
    
    def route_after_risk_eval(self, state: MedicalState):
        """Route decision after risk evaluation"""
        if state["consultation_stage"] == "emergency":
            return "emergency"
        elif state["assessment_complete"]:
            return "continue"
        else:
            return "need_more_info"
    
    def extract_symptoms(self, text: str) -> Dict:
        """Extract and categorize symptoms from patient text"""
        symptoms = {}
        text_lower = text.lower()
        
        for category, symptom_list in MEDICAL_CATEGORIES.items():
            for symptom in symptom_list:
                if symptom in text_lower:
                    symptoms[symptom] = {
                        "category": category,
                        "mentioned_at": datetime.now().isoformat(),
                        "context": text
                    }
        
        return symptoms
    
    def check_red_flags(self, text: str) -> List[str]:
        """Check for emergency red flags"""
        found_flags = []
        text_lower = text.lower()
        
        for flag in RED_FLAGS:
            if flag in text_lower:
                found_flags.append(flag)
        
        return found_flags
    
    def get_missing_vital_questions(self, state: MedicalState) -> List[str]:
        """Determine which vital questions haven't been asked"""
        asked = state["vital_questions_asked"]
        return [q for q in VITAL_QUESTIONS.keys() if q not in asked]
    
    def create_patient_summary(self, state: MedicalState) -> str:
        """Create a comprehensive patient summary"""
        summary = f"""
        Patient Summary:
        Symptoms: {json.dumps(state['symptoms'], indent=2)}
        Medical History: {state['medical_history']}
        Current Medications: {state['current_medications']}
        Allergies: {state['allergies']}
        Severity Scores: {state['severity_scores']}
        Conversation History: {[msg['content'] for msg in state['conversation_history'][-3:]]}
        """
        return summary
    
    def get_meditron_recommendations(self, patient_summary: str) -> List[str]:
        """Get medical recommendations using Meditron model"""
        prompt = f"""
        Based on the following patient information, provide:
        1. Specific over-the-counter medications with dosing
        2. Home remedies and self-care measures
        3. When to seek professional medical care
        4. Follow-up recommendations
        
        Patient Information:
        {patient_summary}
        
        Response:"""
        
        inputs = self.meditron_tokenizer(prompt, return_tensors="pt").to(self.meditron_model.device)
        
        with torch.no_grad():
            outputs = self.meditron_model.generate(
                inputs.input_ids,
                attention_mask=inputs.attention_mask,
                max_new_tokens=400,
                temperature=0.7,
                top_p=0.9,
                do_sample=True
            )
        
        recommendation = self.meditron_tokenizer.decode(
            outputs[0][inputs.input_ids.shape[1]:], 
            skip_special_tokens=True
        )
        
        return [recommendation]
    
    def generate_response(self, message: str, history: List) -> str:
        """Main response generation function"""
        # Initialize or update state
        state = MedicalState(
            patient_id="session_001",
            conversation_history=history + [{"role": "user", "content": message}],
            symptoms={},
            vital_questions_asked=[],
            medical_history={},
            current_medications=[],
            allergies=[],
            severity_scores={},
            red_flags=[],
            assessment_complete=False,
            suggested_actions=[],
            consultation_stage="intake"
        )
        
        # Run through LangGraph workflow
        result = self.workflow.invoke(state)
        
        # Generate contextual response
        response = self.generate_contextual_response(result, message)
        
        return response
    
    def generate_contextual_response(self, state: MedicalState, user_message: str) -> str:
        """Generate a contextual response based on the current state"""
        if state["consultation_stage"] == "emergency":
            return self.format_emergency_response(state)
        elif state["consultation_stage"] == "intake":
            return self.format_intake_response(state, user_message)
        elif state["consultation_stage"] == "assessment":
            return self.format_assessment_response(state)
        elif state["consultation_stage"] == "recommendations":
            return self.format_recommendations_response(state)
        else:
            return self.format_default_response(user_message)
    
    def format_emergency_response(self, state: MedicalState) -> str:
        """Format emergency response"""
        return f"""
        🚨 URGENT MEDICAL ATTENTION NEEDED 🚨
        
        Based on your symptoms, I recommend seeking immediate medical care because:
        {', '.join(state['red_flags'])}
        
        Please:
        - Go to the nearest emergency room, OR
        - Call emergency services (911), OR
        - Contact your doctor immediately
        
        This is not a diagnosis, but these symptoms warrant immediate professional evaluation.
        """
    
    def format_intake_response(self, state: MedicalState, user_message: str) -> str:
        """Format intake response with follow-up questions"""
        # Use Llama-2 to generate empathetic response
        prompt = f"""
        You are a caring virtual doctor. The patient said: "{user_message}"
        
        Respond empathetically and ask 1-2 specific follow-up questions about:
        - Symptom details (duration, severity, triggers)
        - Associated symptoms
        - Medical history if relevant
        
        Be professional, caring, and thorough.
        """
        
        return self.generate_llama_response(prompt)
    
    def format_assessment_response(self, state: MedicalState) -> str:
        """Format detailed assessment response"""
        return "Let me gather a bit more information to better understand your condition..."
    
    def format_recommendations_response(self, state: MedicalState) -> str:
        """Format final recommendations"""
        recommendations = "\n".join(state["suggested_actions"])
        return f"""
        Based on our consultation, here's my assessment and recommendations:
        
        {recommendations}
        
        **Important Disclaimer:** I am an AI assistant, not a licensed medical professional. 
        These suggestions are for informational purposes only. Please consult with a 
        healthcare provider for proper diagnosis and treatment.
        """
    
    def format_default_response(self, user_message: str) -> str:
        """Format default response"""
        return self.generate_llama_response(f"Respond professionally to: {user_message}")
    
    def generate_llama_response(self, prompt: str) -> str:
        """Generate response using Llama-2"""
        formatted_prompt = f"<s>[INST] {prompt} [/INST] "
        inputs = self.tokenizer(formatted_prompt, return_tensors="pt").to(self.model.device)
        
        with torch.no_grad():
            outputs = self.model.generate(
                inputs.input_ids,
                attention_mask=inputs.attention_mask,
                max_new_tokens=300,
                temperature=0.7,
                top_p=0.9,
                do_sample=True,
                pad_token_id=self.tokenizer.eos_token_id
            )
        
        response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
        return response.split('</s>')[0].strip()

# Initialize the enhanced medical assistant
medical_assistant = EnhancedMedicalAssistant()

@spaces.GPU
def chat_interface(message, history):
    """Gradio chat interface"""
    return medical_assistant.generate_response(message, history)

# Create Gradio interface
demo = gr.ChatInterface(
    fn=chat_interface,
    title="πŸ₯ Advanced Medical AI Assistant",
    description="""
    I'm an AI medical assistant that can help assess your symptoms and provide guidance. 
    I'll ask relevant questions to better understand your condition and provide appropriate recommendations.
    
    ⚠️ **Important**: I'm not a replacement for professional medical care. Always consult healthcare providers for serious concerns.
    """,
    examples=[
        "I've been having severe chest pain for the last hour",
        "I have a persistent cough that's been going on for 2 weeks",
        "I'm experiencing nausea and stomach pain after eating",
        "I have a headache and feel dizzy"
    ],
    theme="soft",
    css="""
    .message.user { background-color: #e3f2fd; }
    .message.bot { background-color: #f1f8e9; }
    """
)

if __name__ == "__main__":
    demo.launch(share=True)