File size: 6,294 Bytes
b80af5b
71bcd31
9f6ac99
 
c4447f4
71bcd31
 
 
 
 
c4447f4
71bcd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4447f4
 
71bcd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdce857
 
71bcd31
 
 
aa89cd7
 
 
c4447f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71bcd31
c4447f4
71bcd31
c4447f4
71bcd31
c4447f4
71bcd31
 
 
 
 
 
 
 
 
 
 
c4447f4
71bcd31
 
 
c4447f4
aa89cd7
c4447f4
aa89cd7
c4447f4
 
aa89cd7
 
c4447f4
aa89cd7
 
 
 
 
 
 
c4447f4
aa89cd7
b80af5b
71bcd31
6d5190c
71bcd31
aa89cd7
 
8b29c0d
71bcd31
 
 
8b29c0d
71bcd31
6d5190c
b80af5b
 
71bcd31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from langchain.memory import ConversationBufferMemory

# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"

SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's Name,age,health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
Respond empathetically and clearly. Always be professional and thorough."""

MEDITRON_PROMPT = """<|im_start|>system
You are a specialized medical assistant focusing ONLY on suggesting over-the-counter medicines and home remedies based on patient information.
Based on the following patient information, provide ONLY:
1. One specific over-the-counter medicine with proper adult dosing instructions
2. One practical home remedy that might help
3. Clear guidance on when to seek professional medical care
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
<|im_end|>
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""

print("Loading Llama-2 model...")
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
model = AutoModelForCausalLM.from_pretrained(
    LLAMA_MODEL,
    torch_dtype=torch.float16,
    device_map="auto"
)
print("Llama-2 model loaded successfully!")

print("Loading Meditron model...")
meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
meditron_model = AutoModelForCausalLM.from_pretrained(
    MEDITRON_MODEL,
    torch_dtype=torch.float16,
    device_map="auto"
)
print("Meditron model loaded successfully!")

# Initialize LangChain memory
memory = ConversationBufferMemory(return_messages=True)

def build_llama2_prompt(system_prompt, history, user_input):
    """Format the conversation history and user input for Llama-2 chat models."""
    prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
    
    # Add conversation history
    for user_msg, assistant_msg in history:
        prompt += f"{user_msg} [/INST] {assistant_msg} </s><s>[INST] "
    
    # Add the current user input
    prompt += f"{user_input} [/INST] "
    
    return prompt

def get_meditron_suggestions(patient_info):
    """Use Meditron model to generate medicine and remedy suggestions."""
    prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
    inputs = meditron_tokenizer(prompt, return_tensors="pt").to(meditron_model.device)
    
    with torch.no_grad():
        outputs = meditron_model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=256,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )
    
    suggestion = meditron_tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
    return suggestion

@spaces.GPU
def generate_response(message, history):
    """Generate a response using both models."""
    # Save the latest user message and last assistant response to memory
    if history and len(history[-1]) == 2:
        memory.save_context({"input": history[-1][0]}, {"output": history[-1][1]})
    memory.save_context({"input": message}, {"output": ""})

    # Build conversation history from memory
    lc_history = []
    user_msg = None
    for msg in memory.chat_memory.messages:
        if msg.type == "human":
            user_msg = msg.content
        elif msg.type == "ai" and user_msg is not None:
            assistant_msg = msg.content
            lc_history.append((user_msg, assistant_msg))
            user_msg = None

    # Build the prompt with LangChain memory history
    prompt = build_llama2_prompt(SYSTEM_PROMPT, lc_history, message)

    # Add summarization instruction after 4 turns
    if len(lc_history) >= 4:
        prompt = prompt.replace("[/INST] ", "[/INST] Now summarize what you've learned and suggest when professional care may be needed. ")

    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    # Generate the Llama-2 response
    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )

    # Decode and extract Llama-2's response
    full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
    llama_response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()

    # After 4 turns, add medicine suggestions from Meditron
    if len(lc_history) >= 4:
        # Collect full patient conversation
        full_patient_info = "\n".join([h[0] for h in lc_history] + [message]) + "\n\nSummary: " + llama_response

        # Get medicine suggestions
        medicine_suggestions = get_meditron_suggestions(full_patient_info)

        # Format final response
        final_response = (
            f"{llama_response}\n\n"
            f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
            f"{medicine_suggestions}"
        )
        return final_response

    return llama_response

# Create the Gradio interface
demo = gr.ChatInterface(
    fn=generate_response,
    title="Medical Assistant with Medicine Suggestions",
    description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
    examples=[
        "I have a cough and my throat hurts",
        "I've been having headaches for a week",
        "My stomach has been hurting since yesterday"
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()