File size: 6,841 Bytes
5067011
7dd1c93
c66e1bd
7dd1c93
71bcd31
 
 
 
 
afe76d4
 
 
 
 
 
 
 
 
 
 
6e237a4
afe76d4
 
 
 
 
 
 
 
 
 
 
 
 
1728da9
c66e1bd
 
 
 
 
7dd1c93
 
5067011
c66e1bd
 
 
 
 
 
 
 
 
 
 
 
1728da9
c66e1bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe76d4
c66e1bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728da9
7dd1c93
5067011
c66e1bd
5067011
c66e1bd
 
 
 
 
5067011
1728da9
c66e1bd
5067011
1728da9
7dd1c93
c66e1bd
7dd1c93
c66e1bd
 
 
7dd1c93
c66e1bd
7dd1c93
c66e1bd
 
 
7dd1c93
c66e1bd
7dd1c93
c66e1bd
 
 
7dd1c93
 
 
 
 
 
 
 
 
 
afe76d4
5067011
 
 
 
afe76d4
c66e1bd
 
afe76d4
5067011
 
 
 
 
 
 
1728da9
5067011
c4447f4
afe76d4
6d5190c
5067011
 
afe76d4
8b29c0d
afe76d4
 
 
8b29c0d
afe76d4
6d5190c
b80af5b
 
7dd1c93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces

# Model configuration
LLAMA_MODEL = "meta-llama/Llama-2-7b-chat-hf"
MEDITRON_MODEL = "epfl-llm/meditron-7b"

SYSTEM_PROMPT = """You are a professional virtual doctor. Your goal is to collect detailed information about the user's health condition, symptoms, medical history, medications, lifestyle, and other relevant data.
Ask 1-2 follow-up questions at a time to gather more details about:
- Detailed description of symptoms
- Duration (when did it start?)
- Severity (scale of 1-10)
- Aggravating or alleviating factors
- Related symptoms
- Medical history
- Current medications and allergies
After collecting sufficient information (4-5 exchanges), summarize findings and suggest when they should seek professional care. Do NOT make specific diagnoses or recommend specific treatments.
Respond empathetically and clearly. Always be professional and thorough."""

MEDITRON_PROMPT = """<|im_start|>system
You are a specialized medical assistant focusing ONLY on suggesting over-the-counter medicines and home remedies based on patient information.
Based on the following patient information, provide ONLY:
1. One specific over-the-counter medicine with proper adult dosing instructions
2. One practical home remedy that might help
3. Clear guidance on when to seek professional medical care
Be concise, practical, and focus only on general symptom relief. Do not diagnose. Include a disclaimer that you are not a licensed medical professional.
<|im_end|>
<|im_start|>user
Patient information: {patient_info}
<|im_end|>
<|im_start|>assistant
"""

# Global variables to store models (will be loaded lazily)
llama_model = None
llama_tokenizer = None
meditron_model = None
meditron_tokenizer = None
conversation_turns = 0
patient_data = []

def build_llama2_prompt(system_prompt, history, user_input):
    """Format the conversation history and user input for Llama-2 chat models."""
    prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
    
    # Add conversation history
    for user_msg, assistant_msg in history:
        prompt += f"{user_msg} [/INST] {assistant_msg} </s><s>[INST] "
    
    # Add the current user input
    prompt += f"{user_input} [/INST] "
    
    return prompt

@spaces.GPU
def load_models_if_needed():
    """Load models only when GPU is available and only if not already loaded."""
    global llama_model, llama_tokenizer, meditron_model, meditron_tokenizer
    
    if llama_model is None:
        print("Loading Llama-2 model...")
        llama_tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)
        llama_model = AutoModelForCausalLM.from_pretrained(
            LLAMA_MODEL,
            torch_dtype=torch.float16,
            device_map="auto"
        )
        print("Llama-2 model loaded successfully!")
    
    if meditron_model is None:
        print("Loading Meditron model...")
        meditron_tokenizer = AutoTokenizer.from_pretrained(MEDITRON_MODEL)
        meditron_model = AutoModelForCausalLM.from_pretrained(
            MEDITRON_MODEL,
            torch_dtype=torch.float16,
            device_map="auto"
        )
        print("Meditron model loaded successfully!")

@spaces.GPU
def get_meditron_suggestions(patient_info):
    """Use Meditron model to generate medicine and remedy suggestions."""
    load_models_if_needed()  # Ensure models are loaded
    
    prompt = MEDITRON_PROMPT.format(patient_info=patient_info)
    inputs = meditron_tokenizer(prompt, return_tensors="pt")
    
    # Move inputs to the same device as the model
    if torch.cuda.is_available():
        inputs = {k: v.to(meditron_model.device) for k, v in inputs.items()}
    
    with torch.no_grad():
        outputs = meditron_model.generate(
            inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            max_new_tokens=256,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=meditron_tokenizer.eos_token_id
        )
    
    suggestion = meditron_tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
    return suggestion

@spaces.GPU
def generate_response(message, history):
    """Generate a response using both models."""
    global conversation_turns, patient_data
    
    # Load models if needed
    load_models_if_needed()
    
    # Track conversation turns
    conversation_turns += 1
    
    # Store the entire conversation for reference
    patient_data.append(message)
    
    # Build the prompt with proper Llama-2 formatting
    prompt = build_llama2_prompt(SYSTEM_PROMPT, history, message)
    
    # Add summarization instruction after 4 turns
    if conversation_turns >= 4:
        prompt = prompt.replace("[/INST] ", "[/INST] Now summarize what you've learned and suggest when professional care may be needed. ")
    
    inputs = llama_tokenizer(prompt, return_tensors="pt")
    
    # Move inputs to the same device as the model
    if torch.cuda.is_available():
        inputs = {k: v.to(llama_model.device) for k, v in inputs.items()}
    
    # Generate the Llama-2 response
    with torch.no_grad():
        outputs = llama_model.generate(
            inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=llama_tokenizer.eos_token_id
        )
    
    # Decode and extract Llama-2's response
    full_response = llama_tokenizer.decode(outputs[0], skip_special_tokens=False)
    llama_response = full_response.split('[/INST]')[-1].split('</s>')[0].strip()
    
    # After 4 turns, add medicine suggestions from Meditron
    if conversation_turns >= 4:
        # Collect full patient conversation
        full_patient_info = "\n".join(patient_data) + "\n\nSummary: " + llama_response
        
        # Get medicine suggestions
        medicine_suggestions = get_meditron_suggestions(full_patient_info)
        
        # Format final response
        final_response = (
            f"{llama_response}\n\n"
            f"--- MEDICATION AND HOME CARE SUGGESTIONS ---\n\n"
            f"{medicine_suggestions}"
        )
        return final_response
    
    return llama_response

# Create the Gradio interface
demo = gr.ChatInterface(
    fn=generate_response,
    title="Medical Assistant with Medicine Suggestions",
    description="Tell me about your symptoms, and after gathering enough information, I'll suggest potential remedies.",
    examples=[
        "I have a cough and my throat hurts",
        "I've been having headaches for a week",
        "My stomach has been hurting since yesterday"
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()