Spaces:
Running
on
Zero
Running
on
Zero
# Modified from timm library: | |
# https://github.com/huggingface/pytorch-image-models/blob/648aaa41233ba83eb38faf5ba9d415d574823241/timm/layers/mlp.py#L13 | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .modulate_layers import modulate | |
from ...utils.helper import to_2tuple | |
class MLP(nn.Module): | |
"""MLP as used in Vision Transformer, MLP-Mixer and related networks""" | |
def __init__( | |
self, | |
in_channels, | |
hidden_channels=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
norm_layer=None, | |
bias=True, | |
drop=0.0, | |
use_conv=False, | |
device=None, | |
dtype=None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
out_features = out_features or in_channels | |
hidden_channels = hidden_channels or in_channels | |
bias = to_2tuple(bias) | |
drop_probs = to_2tuple(drop) | |
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear | |
self.fc1 = linear_layer(in_channels, hidden_channels, bias=bias[0], **factory_kwargs) | |
self.act = act_layer() | |
self.drop1 = nn.Dropout(drop_probs[0]) | |
self.norm = norm_layer(hidden_channels, **factory_kwargs) if norm_layer is not None else nn.Identity() | |
self.fc2 = linear_layer(hidden_channels, out_features, bias=bias[1], **factory_kwargs) | |
self.drop2 = nn.Dropout(drop_probs[1]) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop1(x) | |
x = self.norm(x) | |
x = self.fc2(x) | |
x = self.drop2(x) | |
return x | |
# copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py | |
# only used when use_vanilla is True | |
class MLPEmbedder(nn.Module): | |
def __init__(self, in_dim: int, hidden_dim: int, device=None, dtype=None): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True, **factory_kwargs) | |
self.silu = nn.SiLU() | |
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True, **factory_kwargs) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.out_layer(self.silu(self.in_layer(x))) | |
class LinearWarpforSingle(nn.Module): | |
def __init__(self, in_dim: int, out_dim: int, bias=True, device=None, dtype=None): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.fc = nn.Linear(in_dim, out_dim, bias=bias, **factory_kwargs) | |
def forward(self, x, y): | |
z = torch.cat([x, y], dim=2) | |
return self.fc(z) | |
class FinalLayer1D(nn.Module): | |
def __init__(self, hidden_size, patch_size, out_channels, act_layer, device=None, dtype=None): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
# Just use LayerNorm for the final layer | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) | |
self.linear = nn.Linear(hidden_size, patch_size * out_channels, bias=True, **factory_kwargs) | |
nn.init.zeros_(self.linear.weight) | |
nn.init.zeros_(self.linear.bias) | |
# Here we don't distinguish between the modulate types. Just use the simple one. | |
self.adaLN_modulation = nn.Sequential( | |
act_layer(), nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs) | |
) | |
# Zero-initialize the modulation | |
nn.init.zeros_(self.adaLN_modulation[1].weight) | |
nn.init.zeros_(self.adaLN_modulation[1].bias) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) | |
x = modulate(self.norm_final(x), shift=shift, scale=scale) | |
x = self.linear(x) | |
return x | |
class ChannelLastConv1d(nn.Conv1d): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = x.permute(0, 2, 1) | |
x = super().forward(x) | |
x = x.permute(0, 2, 1) | |
return x | |
class ConvMLP(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
multiple_of: int = 256, | |
kernel_size: int = 3, | |
padding: int = 1, | |
device=None, | |
dtype=None, | |
): | |
""" | |
Convolutional MLP module. | |
Args: | |
dim (int): Input dimension. | |
hidden_dim (int): Hidden dimension of the feedforward layer. | |
multiple_of (int): Value to ensure hidden dimension is a multiple of this value. | |
Attributes: | |
w1: Linear transformation for the first layer. | |
w2: Linear transformation for the second layer. | |
w3: Linear transformation for the third layer. | |
""" | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
hidden_dim = int(2 * hidden_dim / 3) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.w1 = ChannelLastConv1d(dim, hidden_dim, bias=False, kernel_size=kernel_size, padding=padding, **factory_kwargs) | |
self.w2 = ChannelLastConv1d(hidden_dim, dim, bias=False, kernel_size=kernel_size, padding=padding, **factory_kwargs) | |
self.w3 = ChannelLastConv1d(dim, hidden_dim, bias=False, kernel_size=kernel_size, padding=padding, **factory_kwargs) | |
def forward(self, x): | |
return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |