SongGeneration / generate.py
root
add lowmem mode
98a0e3b
raw
history blame
25.2 kB
from hmac import new
import sys
import os
import argparse
import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf
from codeclm.models import builders
import gc
from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml
auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto']
class Separator:
def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
self.device = torch.device(f"cuda:{gpu_id}")
else:
self.device = torch.device("cpu")
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)
def init_demucs_model(self, model_path, config_path):
model = get_model_from_yaml(config_path, model_path)
model.to(self.device)
model.eval()
return model
def load_audio(self, f):
a, fs = torchaudio.load(f)
if (fs != 48000):
a = torchaudio.functional.resample(a, fs, 48000)
if a.shape[-1] >= 48000*10:
a = a[..., :48000*10]
return a[:, 0:48000*10]
def run(self, audio_path, output_dir='tmp', ext=".flac"):
os.makedirs(output_dir, exist_ok=True)
name, _ = os.path.splitext(os.path.split(audio_path)[-1])
output_paths = []
for stem in self.demucs_model.sources:
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
if os.path.exists(output_path):
output_paths.append(output_path)
if len(output_paths) == 1: # 4
vocal_path = output_paths[0]
else:
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
for path in [drums_path, bass_path, other_path]:
os.remove(path)
full_audio = self.load_audio(audio_path)
vocal_audio = self.load_audio(vocal_path)
bgm_audio = full_audio - vocal_audio
return full_audio, vocal_audio, bgm_audio
def parse_args():
parser = argparse.ArgumentParser(description='Song Generation Script')
# 必需参数
parser.add_argument('--ckpt_path', type=str, required=True,
help='Path to the checkpoint directory containing config.yaml and model.pt')
parser.add_argument('--input_jsonl', type=str, required=True,
help='Path to input JSONL file containing generation tasks')
parser.add_argument('--save_dir', type=str, required=True,
help='Directory to save generated audio files and results')
# 可选参数
parser.add_argument('--generate_type', type=str, default='mixed',
help='Type of generation: "vocal" or "bgm" or "separate" or "mixed" (default: "mixed")')
parser.add_argument('--use_flash_attn', action='store_true',
help='Whether to use flash attention (default: False)')
parser.add_argument('--low_mem', action='store_true',
help='Whether to use low memory mode (default: False)')
return parser.parse_args()
def generate(args):
ckpt_path = args.ckpt_path
input_jsonl = args.input_jsonl
save_dir = args.save_dir
cfg_path = os.path.join(ckpt_path, 'config.yaml')
ckpt_path = os.path.join(ckpt_path, 'model.pt')
cfg = OmegaConf.load(cfg_path)
cfg.lm.use_flash_attn_2 = args.use_flash_attn
print(f"use_flash_attn: {args.use_flash_attn}")
cfg.mode = 'inference'
max_duration = cfg.max_dur
gen_type = args.generate_type
separator = Separator()
auto_prompt = torch.load('ckpt/prompt.pt')
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg)
audio_tokenizer = audio_tokenizer.eval().cuda()
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
with open(input_jsonl, "r") as fp:
lines = fp.readlines()
new_items = []
for line in lines:
item = json.loads(line)
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
# get prompt audio
if "prompt_audio_path" in item:
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
with torch.no_grad():
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
item['raw_pmt_wav'] = pmt_wav
item['raw_vocal_wav'] = vocal_wav
item['raw_bgm_wav'] = bgm_wav
if pmt_wav.dim() == 2:
pmt_wav = pmt_wav[None]
if pmt_wav.dim() != 3:
raise ValueError("Melody wavs should have a shape [B, C, T].")
pmt_wav = list(pmt_wav)
if vocal_wav.dim() == 2:
vocal_wav = vocal_wav[None]
if vocal_wav.dim() != 3:
raise ValueError("Vocal wavs should have a shape [B, C, T].")
vocal_wav = list(vocal_wav)
if bgm_wav.dim() == 2:
bgm_wav = bgm_wav[None]
if bgm_wav.dim() != 3:
raise ValueError("BGM wavs should have a shape [B, C, T].")
bgm_wav = list(bgm_wav)
if type(pmt_wav) == list:
pmt_wav = torch.stack(pmt_wav, dim=0)
if type(vocal_wav) == list:
vocal_wav = torch.stack(vocal_wav, dim=0)
if type(bgm_wav) == list:
bgm_wav = torch.stack(bgm_wav, dim=0)
pmt_wav = pmt_wav
vocal_wav = vocal_wav
bgm_wav = bgm_wav
with torch.no_grad():
pmt_wav, _ = audio_tokenizer.encode(pmt_wav.cuda())
melody_is_wav = False
elif "auto_prompt_audio_type" in item:
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
if item["auto_prompt_audio_type"] == "Auto":
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
else:
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
pmt_wav = prompt_token[:,[0],:]
vocal_wav = prompt_token[:,[1],:]
bgm_wav = prompt_token[:,[2],:]
melody_is_wav = False
else:
pmt_wav = None
vocal_wav = None
bgm_wav = None
melody_is_wav = True
item['pmt_wav'] = pmt_wav
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
item['melody_is_wav'] = melody_is_wav
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
new_items.append(item)
del audio_tokenizer
del separator
torch.cuda.empty_cache()
if "audio_tokenizer_checkpoint_sep" in cfg.keys():
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
else:
seperate_tokenizer = None
if seperate_tokenizer is not None:
seperate_tokenizer = seperate_tokenizer.eval().cuda()
for item in new_items:
if "prompt_audio_path" in item:
with torch.no_grad():
vocal_wav, bgm_wav = seperate_tokenizer.encode(item['vocal_wav'].cuda(), item['bgm_wav'].cuda())
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
torch.cuda.empty_cache()
audiolm = builders.get_lm_model(cfg)
checkpoint = torch.load(ckpt_path, map_location='cpu')
audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')}
audiolm.load_state_dict(audiolm_state_dict, strict=False)
audiolm = audiolm.eval()
audiolm = audiolm.cuda().to(torch.float16)
model = CodecLM(name = "tmp",
lm = audiolm,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = seperate_tokenizer,
)
cfg_coef = 1.5 #25
temp = 0.9
top_k = 50
top_p = 0.0
record_tokens = True
record_window = 50
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(save_dir + "/audios", exist_ok=True)
os.makedirs(save_dir + "/jsonl", exist_ok=True)
for item in new_items:
lyric = item["gt_lyric"]
descriptions = item["descriptions"] if "descriptions" in item else None
pmt_wav = item['pmt_wav']
vocal_wav = item['vocal_wav']
bgm_wav = item['bgm_wav']
melody_is_wav = item['melody_is_wav']
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [descriptions],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
'melody_is_wav': melody_is_wav,
}
start_time = time.time()
with torch.autocast(device_type="cuda", dtype=torch.float16):
with torch.no_grad():
tokens = model.generate(**generate_inp, return_tokens=True)
mid_time = time.time()
with torch.no_grad():
if 'raw_pmt_wav' in item:
if gen_type == 'separate':
wav_seperate = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='mixed')
wav_vocal = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='vocal')
wav_bgm = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='bgm')
elif gen_type == 'mixed':
wav_seperate = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type=gen_type)
else:
wav_seperate = model.generate_audio(tokens,chunked=True, gen_type=gen_type)
del item['raw_pmt_wav']
del item['raw_vocal_wav']
del item['raw_bgm_wav']
else:
if gen_type == 'separate':
wav_vocal = model.generate_audio(tokens, chunked=True, gen_type='vocal')
wav_bgm = model.generate_audio(tokens, chunked=True, gen_type='bgm')
wav_seperate = model.generate_audio(tokens, chunked=True, gen_type='mixed')
else:
wav_seperate = model.generate_audio(tokens, chunked=True, gen_type=gen_type)
del item['pmt_wav']
del item['vocal_wav']
del item['bgm_wav']
del item['melody_is_wav']
end_time = time.time()
if gen_type == 'separate':
torchaudio.save(target_wav_name.replace('.flac', '_vocal.flac'), wav_vocal[0].cpu().float(), cfg.sample_rate)
torchaudio.save(target_wav_name.replace('.flac', '_bgm.flac'), wav_bgm[0].cpu().float(), cfg.sample_rate)
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
else:
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
print(f"process{item['idx']}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}")
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
src_jsonl_name = os.path.split(input_jsonl)[-1]
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
for item in new_items:
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")
def generate_lowmem(args):
ckpt_path = args.ckpt_path
input_jsonl = args.input_jsonl
save_dir = args.save_dir
cfg_path = os.path.join(ckpt_path, 'config.yaml')
ckpt_path = os.path.join(ckpt_path, 'model.pt')
cfg = OmegaConf.load(cfg_path)
cfg.lm.use_flash_attn_2 = args.use_flash_attn
print(f"use_flash_attn: {args.use_flash_attn}")
cfg.mode = 'inference'
max_duration = cfg.max_dur
gen_type = args.generate_type
chunk_size = 128
use_audio_tokenizer = False
with open(input_jsonl, "r") as fp:
lines = fp.readlines()
for line in lines:
item = json.loads(line)
if "prompt_audio_path" in item:
use_audio_tokenizer = True
break
if use_audio_tokenizer:
separator = Separator()
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg)
audio_tokenizer = audio_tokenizer.eval().cuda()
auto_prompt = torch.load('ckpt/prompt.pt')
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
new_items = []
for line in lines:
item = json.loads(line)
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
# get prompt audio
if "prompt_audio_path" in item:
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
with torch.no_grad():
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
item['raw_pmt_wav'] = pmt_wav
item['raw_vocal_wav'] = vocal_wav
item['raw_bgm_wav'] = bgm_wav
if pmt_wav.dim() == 2:
pmt_wav = pmt_wav[None]
if pmt_wav.dim() != 3:
raise ValueError("Melody wavs should have a shape [B, C, T].")
pmt_wav = list(pmt_wav)
if vocal_wav.dim() == 2:
vocal_wav = vocal_wav[None]
if vocal_wav.dim() != 3:
raise ValueError("Vocal wavs should have a shape [B, C, T].")
vocal_wav = list(vocal_wav)
if bgm_wav.dim() == 2:
bgm_wav = bgm_wav[None]
if bgm_wav.dim() != 3:
raise ValueError("BGM wavs should have a shape [B, C, T].")
bgm_wav = list(bgm_wav)
if type(pmt_wav) == list:
pmt_wav = torch.stack(pmt_wav, dim=0)
if type(vocal_wav) == list:
vocal_wav = torch.stack(vocal_wav, dim=0)
if type(bgm_wav) == list:
bgm_wav = torch.stack(bgm_wav, dim=0)
with torch.no_grad():
pmt_wav, _ = audio_tokenizer.encode(pmt_wav.cuda())
melody_is_wav = False
elif "auto_prompt_audio_type" in item:
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
if item["auto_prompt_audio_type"] == "Auto":
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
else:
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
pmt_wav = prompt_token[:,[0],:]
vocal_wav = prompt_token[:,[1],:]
bgm_wav = prompt_token[:,[2],:]
melody_is_wav = False
else:
pmt_wav = None
vocal_wav = None
bgm_wav = None
melody_is_wav = True
item['pmt_wav'] = pmt_wav
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
item['melody_is_wav'] = melody_is_wav
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
new_items.append(item)
if use_audio_tokenizer:
del audio_tokenizer
del separator
torch.cuda.empty_cache()
if "audio_tokenizer_checkpoint_sep" in cfg.keys() and use_audio_tokenizer:
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
else:
seperate_tokenizer = None
if seperate_tokenizer is not None:
seperate_tokenizer = seperate_tokenizer.eval().cuda()
for item in new_items:
if "prompt_audio_path" in item:
with torch.no_grad():
vocal_wav, bgm_wav = seperate_tokenizer.encode(item['vocal_wav'].cuda(), item['bgm_wav'].cuda())
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
if use_audio_tokenizer:
del seperate_tokenizer
torch.cuda.empty_cache()
# Define model or load pretrained model
audiolm = builders.get_lm_model(cfg)
checkpoint = torch.load(ckpt_path, map_location='cpu')
audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')}
audiolm.load_state_dict(audiolm_state_dict, strict=False)
audiolm = audiolm.eval()
offload_audiolm = True if 'offload' in cfg.keys() and 'audiolm' in cfg.offload else False
if offload_audiolm:
audiolm_offload_param = OffloadParamParse.parse_config(audiolm, cfg.offload.audiolm)
audiolm_offload_param.show()
offload_profiler = OffloadProfiler(device_index=0, **(audiolm_offload_param.init_param_dict()))
offload_profiler.offload_layer(**(audiolm_offload_param.offload_layer_param_dict()))
offload_profiler.clean_cache_wrapper(**(audiolm_offload_param.clean_cache_param_dict()))
else:
audiolm = audiolm.cuda().to(torch.float16)
model = CodecLM(name = "tmp",
lm = audiolm,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = None,
)
cfg_coef = 1.5 #25
temp = 0.9
top_k = 50
top_p = 0.0
record_tokens = True
record_window = 50
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(save_dir + "/audios", exist_ok=True)
os.makedirs(save_dir + "/jsonl", exist_ok=True)
for item in new_items:
lyric = item["gt_lyric"]
descriptions = item["descriptions"] if "descriptions" in item else None
pmt_wav = item['pmt_wav']
vocal_wav = item['vocal_wav']
bgm_wav = item['bgm_wav']
melody_is_wav = item['melody_is_wav']
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [descriptions],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
'melody_is_wav': melody_is_wav,
}
with torch.autocast(device_type="cuda", dtype=torch.float16):
with torch.no_grad():
tokens = model.generate(**generate_inp, return_tokens=True)
if offload_audiolm:
offload_profiler.reset_empty_cache_mem_line()
item['tokens'] = tokens
if offload_audiolm:
offload_profiler.stop()
del offload_profiler
del audiolm_offload_param
del model
audiolm = audiolm.cpu()
del audiolm
del checkpoint
gc.collect()
torch.cuda.empty_cache()
seperate_tokenizer = builders.get_audio_tokenizer_model_cpu(cfg.audio_tokenizer_checkpoint_sep, cfg)
device = "cuda:0"
seperate_tokenizer.model.device = device
seperate_tokenizer.model.vae = seperate_tokenizer.model.vae.to(device)
seperate_tokenizer.model.model.device = torch.device(device)
seperate_tokenizer = seperate_tokenizer.eval()
offload_wav_tokenizer_diffusion = True if 'offload' in cfg.keys() and 'wav_tokenizer_diffusion' in cfg.offload else False
if offload_wav_tokenizer_diffusion:
sep_offload_param = OffloadParamParse.parse_config(seperate_tokenizer, cfg.offload.wav_tokenizer_diffusion)
sep_offload_param.show()
sep_offload_profiler = OffloadProfiler(device_index=0, **(sep_offload_param.init_param_dict()))
sep_offload_profiler.offload_layer(**(sep_offload_param.offload_layer_param_dict()))
sep_offload_profiler.clean_cache_wrapper(**(sep_offload_param.clean_cache_param_dict()))
else:
seperate_tokenizer.model.model = seperate_tokenizer.model.model.to(device)
model = CodecLM(name = "tmp",
lm = None,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = seperate_tokenizer,
)
for item in new_items:
with torch.no_grad():
if 'raw_pmt_wav' in item:
if gen_type == 'separate':
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type='mixed')
wav_vocal = model.generate_audio(item['tokens'],chunked=True, gen_type='vocal')
wav_bgm = model.generate_audio(item['tokens'], chunked=True, gen_type='bgm')
elif gen_type == 'mixed':
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type=gen_type)
else:
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type)
del item['raw_pmt_wav']
del item['raw_vocal_wav']
del item['raw_bgm_wav']
else:
if gen_type == 'separate':
wav_vocal = model.generate_audio(item['tokens'], chunked=True, gen_type='vocal')
wav_bgm = model.generate_audio(item['tokens'], chunked=True, gen_type='bgm')
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type='mixed')
else:
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type)
if gen_type == 'separate':
torchaudio.save(item['wav_path'].replace('.flac', '_vocal.flac'), wav_vocal[0].cpu().float(), cfg.sample_rate)
torchaudio.save(item['wav_path'].replace('.flac', '_bgm.flac'), wav_bgm[0].cpu().float(), cfg.sample_rate)
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
else:
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
del item['tokens']
del item['pmt_wav']
del item['vocal_wav']
del item['bgm_wav']
del item['melody_is_wav']
if offload_wav_tokenizer_diffusion:
sep_offload_profiler.reset_empty_cache_mem_line()
if offload_wav_tokenizer_diffusion:
sep_offload_profiler.stop()
torch.cuda.empty_cache()
src_jsonl_name = os.path.split(input_jsonl)[-1]
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
for item in new_items:
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")
if __name__ == "__main__":
torch.backends.cudnn.enabled = False
OmegaConf.register_new_resolver("eval", lambda x: eval(x))
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
np.random.seed(int(time.time()))
# 解析命令行参数
args = parse_args()
if torch.cuda.is_available():
device = torch.cuda.current_device()
reserved = torch.cuda.memory_reserved(device)
total = torch.cuda.get_device_properties(device).total_memory
res_mem = (total - reserved) / 1024 / 1024 / 1024
print(f"reserved memory: {res_mem}GB")
model_name = args.ckpt_path.split("/")[-1]
assert model_name in ['songgeneration_base'], f'{model_name} is not supported, currently only songgeneration_base is supported'
if model_name == 'songgeneration_base':
if res_mem > 24 and not args.low_mem:
print("use generate")
generate(args)
else:
from codeclm.utils.offload_profiler import OffloadProfiler, OffloadParamParse
print("use generate_lowmem")
generate_lowmem(args)
else:
print("CUDA is not available")
exit()