Spaces:
Running
on
L40S
Running
on
L40S
from hmac import new | |
import sys | |
import os | |
import argparse | |
import time | |
import json | |
import torch | |
import torchaudio | |
import numpy as np | |
from omegaconf import OmegaConf | |
from codeclm.models import builders | |
import gc | |
from codeclm.trainer.codec_song_pl import CodecLM_PL | |
from codeclm.models import CodecLM | |
from third_party.demucs.models.pretrained import get_model_from_yaml | |
auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto'] | |
class Separator: | |
def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None: | |
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count(): | |
self.device = torch.device(f"cuda:{gpu_id}") | |
else: | |
self.device = torch.device("cpu") | |
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path) | |
def init_demucs_model(self, model_path, config_path): | |
model = get_model_from_yaml(config_path, model_path) | |
model.to(self.device) | |
model.eval() | |
return model | |
def load_audio(self, f): | |
a, fs = torchaudio.load(f) | |
if (fs != 48000): | |
a = torchaudio.functional.resample(a, fs, 48000) | |
if a.shape[-1] >= 48000*10: | |
a = a[..., :48000*10] | |
return a[:, 0:48000*10] | |
def run(self, audio_path, output_dir='tmp', ext=".flac"): | |
os.makedirs(output_dir, exist_ok=True) | |
name, _ = os.path.splitext(os.path.split(audio_path)[-1]) | |
output_paths = [] | |
for stem in self.demucs_model.sources: | |
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}") | |
if os.path.exists(output_path): | |
output_paths.append(output_path) | |
if len(output_paths) == 1: # 4 | |
vocal_path = output_paths[0] | |
else: | |
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device) | |
for path in [drums_path, bass_path, other_path]: | |
os.remove(path) | |
full_audio = self.load_audio(audio_path) | |
vocal_audio = self.load_audio(vocal_path) | |
bgm_audio = full_audio - vocal_audio | |
return full_audio, vocal_audio, bgm_audio | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Song Generation Script') | |
# 必需参数 | |
parser.add_argument('--ckpt_path', type=str, required=True, | |
help='Path to the checkpoint directory containing config.yaml and model.pt') | |
parser.add_argument('--input_jsonl', type=str, required=True, | |
help='Path to input JSONL file containing generation tasks') | |
parser.add_argument('--save_dir', type=str, required=True, | |
help='Directory to save generated audio files and results') | |
# 可选参数 | |
parser.add_argument('--generate_type', type=str, default='mixed', | |
help='Type of generation: "vocal" or "bgm" or "separate" or "mixed" (default: "mixed")') | |
parser.add_argument('--use_flash_attn', action='store_true', | |
help='Whether to use flash attention (default: False)') | |
parser.add_argument('--low_mem', action='store_true', | |
help='Whether to use low memory mode (default: False)') | |
return parser.parse_args() | |
def generate(args): | |
ckpt_path = args.ckpt_path | |
input_jsonl = args.input_jsonl | |
save_dir = args.save_dir | |
cfg_path = os.path.join(ckpt_path, 'config.yaml') | |
ckpt_path = os.path.join(ckpt_path, 'model.pt') | |
cfg = OmegaConf.load(cfg_path) | |
cfg.lm.use_flash_attn_2 = args.use_flash_attn | |
print(f"use_flash_attn: {args.use_flash_attn}") | |
cfg.mode = 'inference' | |
max_duration = cfg.max_dur | |
gen_type = args.generate_type | |
separator = Separator() | |
auto_prompt = torch.load('ckpt/prompt.pt') | |
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg) | |
audio_tokenizer = audio_tokenizer.eval().cuda() | |
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist] | |
with open(input_jsonl, "r") as fp: | |
lines = fp.readlines() | |
new_items = [] | |
for line in lines: | |
item = json.loads(line) | |
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac" | |
# get prompt audio | |
if "prompt_audio_path" in item: | |
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found" | |
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together" | |
with torch.no_grad(): | |
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path']) | |
item['raw_pmt_wav'] = pmt_wav | |
item['raw_vocal_wav'] = vocal_wav | |
item['raw_bgm_wav'] = bgm_wav | |
if pmt_wav.dim() == 2: | |
pmt_wav = pmt_wav[None] | |
if pmt_wav.dim() != 3: | |
raise ValueError("Melody wavs should have a shape [B, C, T].") | |
pmt_wav = list(pmt_wav) | |
if vocal_wav.dim() == 2: | |
vocal_wav = vocal_wav[None] | |
if vocal_wav.dim() != 3: | |
raise ValueError("Vocal wavs should have a shape [B, C, T].") | |
vocal_wav = list(vocal_wav) | |
if bgm_wav.dim() == 2: | |
bgm_wav = bgm_wav[None] | |
if bgm_wav.dim() != 3: | |
raise ValueError("BGM wavs should have a shape [B, C, T].") | |
bgm_wav = list(bgm_wav) | |
if type(pmt_wav) == list: | |
pmt_wav = torch.stack(pmt_wav, dim=0) | |
if type(vocal_wav) == list: | |
vocal_wav = torch.stack(vocal_wav, dim=0) | |
if type(bgm_wav) == list: | |
bgm_wav = torch.stack(bgm_wav, dim=0) | |
pmt_wav = pmt_wav | |
vocal_wav = vocal_wav | |
bgm_wav = bgm_wav | |
with torch.no_grad(): | |
pmt_wav, _ = audio_tokenizer.encode(pmt_wav.cuda()) | |
melody_is_wav = False | |
elif "auto_prompt_audio_type" in item: | |
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found" | |
if item["auto_prompt_audio_type"] == "Auto": | |
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))] | |
else: | |
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))] | |
pmt_wav = prompt_token[:,[0],:] | |
vocal_wav = prompt_token[:,[1],:] | |
bgm_wav = prompt_token[:,[2],:] | |
melody_is_wav = False | |
else: | |
pmt_wav = None | |
vocal_wav = None | |
bgm_wav = None | |
melody_is_wav = True | |
item['pmt_wav'] = pmt_wav | |
item['vocal_wav'] = vocal_wav | |
item['bgm_wav'] = bgm_wav | |
item['melody_is_wav'] = melody_is_wav | |
item["idx"] = f"{item['idx']}" | |
item["wav_path"] = target_wav_name | |
new_items.append(item) | |
del audio_tokenizer | |
del separator | |
torch.cuda.empty_cache() | |
if "audio_tokenizer_checkpoint_sep" in cfg.keys(): | |
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg) | |
else: | |
seperate_tokenizer = None | |
if seperate_tokenizer is not None: | |
seperate_tokenizer = seperate_tokenizer.eval().cuda() | |
for item in new_items: | |
if "prompt_audio_path" in item: | |
with torch.no_grad(): | |
vocal_wav, bgm_wav = seperate_tokenizer.encode(item['vocal_wav'].cuda(), item['bgm_wav'].cuda()) | |
item['vocal_wav'] = vocal_wav | |
item['bgm_wav'] = bgm_wav | |
torch.cuda.empty_cache() | |
audiolm = builders.get_lm_model(cfg) | |
checkpoint = torch.load(ckpt_path, map_location='cpu') | |
audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')} | |
audiolm.load_state_dict(audiolm_state_dict, strict=False) | |
audiolm = audiolm.eval() | |
audiolm = audiolm.cuda().to(torch.float16) | |
model = CodecLM(name = "tmp", | |
lm = audiolm, | |
audiotokenizer = None, | |
max_duration = max_duration, | |
seperate_tokenizer = seperate_tokenizer, | |
) | |
cfg_coef = 1.5 #25 | |
temp = 0.9 | |
top_k = 50 | |
top_p = 0.0 | |
record_tokens = True | |
record_window = 50 | |
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef, | |
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window) | |
os.makedirs(save_dir, exist_ok=True) | |
os.makedirs(save_dir + "/audios", exist_ok=True) | |
os.makedirs(save_dir + "/jsonl", exist_ok=True) | |
for item in new_items: | |
lyric = item["gt_lyric"] | |
descriptions = item["descriptions"] if "descriptions" in item else None | |
pmt_wav = item['pmt_wav'] | |
vocal_wav = item['vocal_wav'] | |
bgm_wav = item['bgm_wav'] | |
melody_is_wav = item['melody_is_wav'] | |
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac" | |
generate_inp = { | |
'lyrics': [lyric.replace(" ", " ")], | |
'descriptions': [descriptions], | |
'melody_wavs': pmt_wav, | |
'vocal_wavs': vocal_wav, | |
'bgm_wavs': bgm_wav, | |
'melody_is_wav': melody_is_wav, | |
} | |
start_time = time.time() | |
with torch.autocast(device_type="cuda", dtype=torch.float16): | |
with torch.no_grad(): | |
tokens = model.generate(**generate_inp, return_tokens=True) | |
mid_time = time.time() | |
with torch.no_grad(): | |
if 'raw_pmt_wav' in item: | |
if gen_type == 'separate': | |
wav_seperate = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='mixed') | |
wav_vocal = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='vocal') | |
wav_bgm = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='bgm') | |
elif gen_type == 'mixed': | |
wav_seperate = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type=gen_type) | |
else: | |
wav_seperate = model.generate_audio(tokens,chunked=True, gen_type=gen_type) | |
del item['raw_pmt_wav'] | |
del item['raw_vocal_wav'] | |
del item['raw_bgm_wav'] | |
else: | |
if gen_type == 'separate': | |
wav_vocal = model.generate_audio(tokens, chunked=True, gen_type='vocal') | |
wav_bgm = model.generate_audio(tokens, chunked=True, gen_type='bgm') | |
wav_seperate = model.generate_audio(tokens, chunked=True, gen_type='mixed') | |
else: | |
wav_seperate = model.generate_audio(tokens, chunked=True, gen_type=gen_type) | |
del item['pmt_wav'] | |
del item['vocal_wav'] | |
del item['bgm_wav'] | |
del item['melody_is_wav'] | |
end_time = time.time() | |
if gen_type == 'separate': | |
torchaudio.save(target_wav_name.replace('.flac', '_vocal.flac'), wav_vocal[0].cpu().float(), cfg.sample_rate) | |
torchaudio.save(target_wav_name.replace('.flac', '_bgm.flac'), wav_bgm[0].cpu().float(), cfg.sample_rate) | |
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate) | |
else: | |
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate) | |
print(f"process{item['idx']}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}") | |
item["idx"] = f"{item['idx']}" | |
item["wav_path"] = target_wav_name | |
src_jsonl_name = os.path.split(input_jsonl)[-1] | |
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw: | |
for item in new_items: | |
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n") | |
def generate_lowmem(args): | |
ckpt_path = args.ckpt_path | |
input_jsonl = args.input_jsonl | |
save_dir = args.save_dir | |
cfg_path = os.path.join(ckpt_path, 'config.yaml') | |
ckpt_path = os.path.join(ckpt_path, 'model.pt') | |
cfg = OmegaConf.load(cfg_path) | |
cfg.lm.use_flash_attn_2 = args.use_flash_attn | |
print(f"use_flash_attn: {args.use_flash_attn}") | |
cfg.mode = 'inference' | |
max_duration = cfg.max_dur | |
gen_type = args.generate_type | |
chunk_size = 128 | |
use_audio_tokenizer = False | |
with open(input_jsonl, "r") as fp: | |
lines = fp.readlines() | |
for line in lines: | |
item = json.loads(line) | |
if "prompt_audio_path" in item: | |
use_audio_tokenizer = True | |
break | |
if use_audio_tokenizer: | |
separator = Separator() | |
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg) | |
audio_tokenizer = audio_tokenizer.eval().cuda() | |
auto_prompt = torch.load('ckpt/prompt.pt') | |
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist] | |
new_items = [] | |
for line in lines: | |
item = json.loads(line) | |
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac" | |
# get prompt audio | |
if "prompt_audio_path" in item: | |
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found" | |
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together" | |
with torch.no_grad(): | |
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path']) | |
item['raw_pmt_wav'] = pmt_wav | |
item['raw_vocal_wav'] = vocal_wav | |
item['raw_bgm_wav'] = bgm_wav | |
if pmt_wav.dim() == 2: | |
pmt_wav = pmt_wav[None] | |
if pmt_wav.dim() != 3: | |
raise ValueError("Melody wavs should have a shape [B, C, T].") | |
pmt_wav = list(pmt_wav) | |
if vocal_wav.dim() == 2: | |
vocal_wav = vocal_wav[None] | |
if vocal_wav.dim() != 3: | |
raise ValueError("Vocal wavs should have a shape [B, C, T].") | |
vocal_wav = list(vocal_wav) | |
if bgm_wav.dim() == 2: | |
bgm_wav = bgm_wav[None] | |
if bgm_wav.dim() != 3: | |
raise ValueError("BGM wavs should have a shape [B, C, T].") | |
bgm_wav = list(bgm_wav) | |
if type(pmt_wav) == list: | |
pmt_wav = torch.stack(pmt_wav, dim=0) | |
if type(vocal_wav) == list: | |
vocal_wav = torch.stack(vocal_wav, dim=0) | |
if type(bgm_wav) == list: | |
bgm_wav = torch.stack(bgm_wav, dim=0) | |
with torch.no_grad(): | |
pmt_wav, _ = audio_tokenizer.encode(pmt_wav.cuda()) | |
melody_is_wav = False | |
elif "auto_prompt_audio_type" in item: | |
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found" | |
if item["auto_prompt_audio_type"] == "Auto": | |
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))] | |
else: | |
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))] | |
pmt_wav = prompt_token[:,[0],:] | |
vocal_wav = prompt_token[:,[1],:] | |
bgm_wav = prompt_token[:,[2],:] | |
melody_is_wav = False | |
else: | |
pmt_wav = None | |
vocal_wav = None | |
bgm_wav = None | |
melody_is_wav = True | |
item['pmt_wav'] = pmt_wav | |
item['vocal_wav'] = vocal_wav | |
item['bgm_wav'] = bgm_wav | |
item['melody_is_wav'] = melody_is_wav | |
item["idx"] = f"{item['idx']}" | |
item["wav_path"] = target_wav_name | |
new_items.append(item) | |
if use_audio_tokenizer: | |
del audio_tokenizer | |
del separator | |
torch.cuda.empty_cache() | |
if "audio_tokenizer_checkpoint_sep" in cfg.keys() and use_audio_tokenizer: | |
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg) | |
else: | |
seperate_tokenizer = None | |
if seperate_tokenizer is not None: | |
seperate_tokenizer = seperate_tokenizer.eval().cuda() | |
for item in new_items: | |
if "prompt_audio_path" in item: | |
with torch.no_grad(): | |
vocal_wav, bgm_wav = seperate_tokenizer.encode(item['vocal_wav'].cuda(), item['bgm_wav'].cuda()) | |
item['vocal_wav'] = vocal_wav | |
item['bgm_wav'] = bgm_wav | |
if use_audio_tokenizer: | |
del seperate_tokenizer | |
torch.cuda.empty_cache() | |
# Define model or load pretrained model | |
audiolm = builders.get_lm_model(cfg) | |
checkpoint = torch.load(ckpt_path, map_location='cpu') | |
audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')} | |
audiolm.load_state_dict(audiolm_state_dict, strict=False) | |
audiolm = audiolm.eval() | |
offload_audiolm = True if 'offload' in cfg.keys() and 'audiolm' in cfg.offload else False | |
if offload_audiolm: | |
audiolm_offload_param = OffloadParamParse.parse_config(audiolm, cfg.offload.audiolm) | |
audiolm_offload_param.show() | |
offload_profiler = OffloadProfiler(device_index=0, **(audiolm_offload_param.init_param_dict())) | |
offload_profiler.offload_layer(**(audiolm_offload_param.offload_layer_param_dict())) | |
offload_profiler.clean_cache_wrapper(**(audiolm_offload_param.clean_cache_param_dict())) | |
else: | |
audiolm = audiolm.cuda().to(torch.float16) | |
model = CodecLM(name = "tmp", | |
lm = audiolm, | |
audiotokenizer = None, | |
max_duration = max_duration, | |
seperate_tokenizer = None, | |
) | |
cfg_coef = 1.5 #25 | |
temp = 0.9 | |
top_k = 50 | |
top_p = 0.0 | |
record_tokens = True | |
record_window = 50 | |
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef, | |
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window) | |
os.makedirs(save_dir, exist_ok=True) | |
os.makedirs(save_dir + "/audios", exist_ok=True) | |
os.makedirs(save_dir + "/jsonl", exist_ok=True) | |
for item in new_items: | |
lyric = item["gt_lyric"] | |
descriptions = item["descriptions"] if "descriptions" in item else None | |
pmt_wav = item['pmt_wav'] | |
vocal_wav = item['vocal_wav'] | |
bgm_wav = item['bgm_wav'] | |
melody_is_wav = item['melody_is_wav'] | |
generate_inp = { | |
'lyrics': [lyric.replace(" ", " ")], | |
'descriptions': [descriptions], | |
'melody_wavs': pmt_wav, | |
'vocal_wavs': vocal_wav, | |
'bgm_wavs': bgm_wav, | |
'melody_is_wav': melody_is_wav, | |
} | |
with torch.autocast(device_type="cuda", dtype=torch.float16): | |
with torch.no_grad(): | |
tokens = model.generate(**generate_inp, return_tokens=True) | |
if offload_audiolm: | |
offload_profiler.reset_empty_cache_mem_line() | |
item['tokens'] = tokens | |
if offload_audiolm: | |
offload_profiler.stop() | |
del offload_profiler | |
del audiolm_offload_param | |
del model | |
audiolm = audiolm.cpu() | |
del audiolm | |
del checkpoint | |
gc.collect() | |
torch.cuda.empty_cache() | |
seperate_tokenizer = builders.get_audio_tokenizer_model_cpu(cfg.audio_tokenizer_checkpoint_sep, cfg) | |
device = "cuda:0" | |
seperate_tokenizer.model.device = device | |
seperate_tokenizer.model.vae = seperate_tokenizer.model.vae.to(device) | |
seperate_tokenizer.model.model.device = torch.device(device) | |
seperate_tokenizer = seperate_tokenizer.eval() | |
offload_wav_tokenizer_diffusion = True if 'offload' in cfg.keys() and 'wav_tokenizer_diffusion' in cfg.offload else False | |
if offload_wav_tokenizer_diffusion: | |
sep_offload_param = OffloadParamParse.parse_config(seperate_tokenizer, cfg.offload.wav_tokenizer_diffusion) | |
sep_offload_param.show() | |
sep_offload_profiler = OffloadProfiler(device_index=0, **(sep_offload_param.init_param_dict())) | |
sep_offload_profiler.offload_layer(**(sep_offload_param.offload_layer_param_dict())) | |
sep_offload_profiler.clean_cache_wrapper(**(sep_offload_param.clean_cache_param_dict())) | |
else: | |
seperate_tokenizer.model.model = seperate_tokenizer.model.model.to(device) | |
model = CodecLM(name = "tmp", | |
lm = None, | |
audiotokenizer = None, | |
max_duration = max_duration, | |
seperate_tokenizer = seperate_tokenizer, | |
) | |
for item in new_items: | |
with torch.no_grad(): | |
if 'raw_pmt_wav' in item: | |
if gen_type == 'separate': | |
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type='mixed') | |
wav_vocal = model.generate_audio(item['tokens'],chunked=True, gen_type='vocal') | |
wav_bgm = model.generate_audio(item['tokens'], chunked=True, gen_type='bgm') | |
elif gen_type == 'mixed': | |
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type=gen_type) | |
else: | |
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type) | |
del item['raw_pmt_wav'] | |
del item['raw_vocal_wav'] | |
del item['raw_bgm_wav'] | |
else: | |
if gen_type == 'separate': | |
wav_vocal = model.generate_audio(item['tokens'], chunked=True, gen_type='vocal') | |
wav_bgm = model.generate_audio(item['tokens'], chunked=True, gen_type='bgm') | |
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type='mixed') | |
else: | |
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type) | |
if gen_type == 'separate': | |
torchaudio.save(item['wav_path'].replace('.flac', '_vocal.flac'), wav_vocal[0].cpu().float(), cfg.sample_rate) | |
torchaudio.save(item['wav_path'].replace('.flac', '_bgm.flac'), wav_bgm[0].cpu().float(), cfg.sample_rate) | |
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate) | |
else: | |
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate) | |
del item['tokens'] | |
del item['pmt_wav'] | |
del item['vocal_wav'] | |
del item['bgm_wav'] | |
del item['melody_is_wav'] | |
if offload_wav_tokenizer_diffusion: | |
sep_offload_profiler.reset_empty_cache_mem_line() | |
if offload_wav_tokenizer_diffusion: | |
sep_offload_profiler.stop() | |
torch.cuda.empty_cache() | |
src_jsonl_name = os.path.split(input_jsonl)[-1] | |
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw: | |
for item in new_items: | |
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n") | |
if __name__ == "__main__": | |
torch.backends.cudnn.enabled = False | |
OmegaConf.register_new_resolver("eval", lambda x: eval(x)) | |
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx]) | |
OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0]) | |
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x))) | |
np.random.seed(int(time.time())) | |
# 解析命令行参数 | |
args = parse_args() | |
if torch.cuda.is_available(): | |
device = torch.cuda.current_device() | |
reserved = torch.cuda.memory_reserved(device) | |
total = torch.cuda.get_device_properties(device).total_memory | |
res_mem = (total - reserved) / 1024 / 1024 / 1024 | |
print(f"reserved memory: {res_mem}GB") | |
model_name = args.ckpt_path.split("/")[-1] | |
assert model_name in ['songgeneration_base'], f'{model_name} is not supported, currently only songgeneration_base is supported' | |
if model_name == 'songgeneration_base': | |
if res_mem > 24 and not args.low_mem: | |
print("use generate") | |
generate(args) | |
else: | |
from codeclm.utils.offload_profiler import OffloadProfiler, OffloadParamParse | |
print("use generate_lowmem") | |
generate_lowmem(args) | |
else: | |
print("CUDA is not available") | |
exit() | |