File size: 10,968 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
10e9b7d
b47bf87
 
 
 
e80aab9
3db6293
e80aab9
b47bf87
31243f4
 
b47bf87
 
 
 
 
 
 
 
 
 
 
689af46
bd2f7cd
b47bf87
 
bd2f7cd
b47bf87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
b47bf87
 
 
 
 
 
 
4021bf3
b47bf87
 
31243f4
b47bf87
 
31243f4
7d65c66
b47bf87
7e4a06b
b47bf87
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b47bf87
31243f4
 
 
3c4371f
31243f4
b47bf87
 
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
b47bf87
 
31243f4
e80aab9
31243f4
 
3c4371f
b47bf87
 
 
7d65c66
31243f4
 
e80aab9
b47bf87
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
b47bf87
 
31243f4
 
3c4371f
31243f4
 
b47bf87
7d65c66
3c4371f
31243f4
e80aab9
b47bf87
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
b47bf87
 
 
e514fd7
 
b47bf87
 
 
e514fd7
e80aab9
7e4a06b
31243f4
9088b99
7d65c66
31243f4
 
 
e80aab9
 
 
b47bf87
3c4371f
b47bf87
3c4371f
 
7d65c66
3c4371f
7d65c66
b47bf87
7d65c66
 
 
 
 
b47bf87
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import gradio as gr
import requests
import inspect
import pandas as pd

# Import the Google Gen AI modules
from google import genai
from google.genai import types

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Updated Agent Definition using Google Gen AI API ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent (Google Gen AI) initialized.")
    
    def generate_answer(self, question: str) -> str:
        """
        Generates a precise answer using the Google Gen AI API.
        The system instruction mandates that the output contain only the final answer.
        """
        api_key = os.environ.get("GEMINI_API_KEY")
        if not api_key:
            raise ValueError("GEMINI_API_KEY environment variable not set. Please set it before running.")
        client = genai.Client(api_key=api_key)
        model = "gemini-2.5-pro-preview-05-06"
         

        # Define a strict system instruction. Ensure that the output is minimal:
        system_instruction_text = ("You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.")

        # Build the conversation contents with the user query.
        contents = [
            types.Content(
                role="user",
                parts=[types.Part.from_text(text=question)]
            )
        ]

        # Include the built-in Google Search tool so the model can fetch live data if needed.
        tools = [types.Tool(google_search=types.GoogleSearch())]

        # Prepare the configuration with the system instruction.
        generate_config = types.GenerateContentConfig(
            tools=tools,
            response_mime_type="text/plain",
            system_instruction=[types.Part.from_text(text=system_instruction_text)]
        )

        answer = ""
        # Stream the response in chunks and aggregate the final answer.
        for chunk in client.models.generate_content_stream(
            model=model,
            contents=contents,
            config=generate_config
        ):
            answer += chunk.text

        return answer.strip()
    
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        try:
            answer = self.generate_answer(question)
            print(f"Agent returning answer: {answer}")
        except Exception as e:
            print(f"Error generating answer: {e}")
            answer = f"AGENT ERROR: {e}"
        return answer


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all evaluation questions, runs the BasicAgent on them,
    submits all answers to the scoring API, and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Used to send a link to your code repository
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate your agent
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # Link to your public code (your Hugging Face Space breadboard)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent on each question
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission data
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit the answers for scoring
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Please clone this space, then modify the code to define your agent's logic, the tools, and necessary packages.
        2. Log in to your Hugging Face account using the button below. Your HF username is used for submission.
        3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
        ---
        **Disclaimers:**
        Once you click the submit button it may take some time as the agent processes all the questions.
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own robust solution.
        For instance, you might cache the answers and submit in a separate action or process them asynchronously.
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")
    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")
    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
    print("-" * (60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)