Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from transformers import AutoModel | |
class DeBERTaLSTMClassifier(nn.Module): | |
def __init__(self, hidden_dim=128, num_labels=2): | |
super().__init__() | |
self.deberta = AutoModel.from_pretrained("microsoft/deberta-base") | |
for param in self.deberta.parameters(): | |
param.requires_grad = False # freeze DeBERTa (as we don't have enough resources, we will not train DeBERTa in this model) | |
self.lstm = nn.LSTM( | |
input_size=self.deberta.config.hidden_size, | |
hidden_size=hidden_dim, | |
batch_first=True, | |
bidirectional=True | |
) | |
self.fc = nn.Linear(hidden_dim * 2, num_labels) | |
# Attention layer để tính token importance | |
self.attention = nn.Linear(hidden_dim * 2, 1) | |
def forward(self, input_ids, attention_mask, return_attention=False): | |
with torch.no_grad(): | |
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask, output_attentions=True) | |
lstm_out, _ = self.lstm(outputs.last_hidden_state) # shape: [batch, seq_len, hidden*2] | |
if return_attention: | |
# Tính attention weights cho từng token | |
attention_weights = self.attention(lstm_out) # [batch, seq_len, 1] | |
attention_weights = F.softmax(attention_weights.squeeze(-1), dim=-1) # [batch, seq_len] | |
# Apply attention mask | |
attention_weights = attention_weights * attention_mask.float() | |
attention_weights = attention_weights / (attention_weights.sum(dim=-1, keepdim=True) + 1e-8) | |
# Weighted sum of LSTM outputs | |
attended_output = torch.sum(lstm_out * attention_weights.unsqueeze(-1), dim=1) | |
logits = self.fc(attended_output) | |
return logits, attention_weights, outputs.attentions | |
else: | |
final_hidden = lstm_out[:, -1, :] # last token output | |
logits = self.fc(final_hidden) | |
return logits |