Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,44 +15,44 @@ from diffusers.utils import load_image
|
|
| 15 |
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
| 16 |
pipe = None
|
| 17 |
torch.set_grad_enabled(False)
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
|
| 51 |
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
| 52 |
lora_path = 'theSure/Omnieraser'
|
| 53 |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
| 54 |
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
|
| 55 |
-
# enable image inputs
|
| 56 |
with torch.no_grad():
|
| 57 |
initial_input_channels = transformer.config.in_channels
|
| 58 |
new_linear = torch.nn.Linear(
|
|
@@ -90,64 +90,48 @@ def set_seed(seed):
|
|
| 90 |
@spaces.GPU
|
| 91 |
def predict(
|
| 92 |
input_image,
|
|
|
|
| 93 |
prompt,
|
| 94 |
ddim_steps,
|
| 95 |
seed,
|
| 96 |
scale,
|
| 97 |
-
image_paths,
|
| 98 |
-
mask_paths
|
| 99 |
|
| 100 |
):
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
input_image["background"] = load_image(image_paths).convert("RGB")
|
| 105 |
-
input_image["layers"][0] = load_image(mask_paths).convert("RGB")
|
| 106 |
-
|
| 107 |
-
size1, size2 = input_image["background"].convert("RGB").size
|
| 108 |
-
icc_profile = input_image["background"].info.get('icc_profile')
|
| 109 |
if icc_profile:
|
| 110 |
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
|
| 111 |
srgb_profile = ImageCms.createProfile("sRGB")
|
| 112 |
io_handle = io.BytesIO(icc_profile)
|
| 113 |
src_profile = ImageCms.ImageCmsProfile(io_handle)
|
| 114 |
-
input_image
|
| 115 |
-
input_image
|
| 116 |
|
| 117 |
if size1 < size2:
|
| 118 |
-
input_image
|
| 119 |
else:
|
| 120 |
-
input_image
|
| 121 |
|
| 122 |
-
img = np.array(input_image
|
| 123 |
|
| 124 |
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
| 125 |
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
| 126 |
|
| 127 |
-
input_image
|
| 128 |
-
|
| 129 |
|
| 130 |
if seed == -1:
|
| 131 |
seed = random.randint(1, 2147483647)
|
| 132 |
set_seed(random.randint(1, 2147483647))
|
| 133 |
else:
|
| 134 |
set_seed(seed)
|
| 135 |
-
if image_paths is None:
|
| 136 |
-
img=input_image["layers"][0]
|
| 137 |
-
img_data = np.array(img)
|
| 138 |
-
alpha_channel = img_data[:, :, 3]
|
| 139 |
-
white_background = np.ones_like(alpha_channel) * 255
|
| 140 |
-
gray_image = white_background.copy()
|
| 141 |
-
gray_image[alpha_channel == 0] = 0
|
| 142 |
-
gray_image_pil = Image.fromarray(gray_image).convert('L')
|
| 143 |
-
else:
|
| 144 |
-
gray_image_pil = input_image["layers"][0]
|
| 145 |
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
| 146 |
lora_path = 'theSure/Omnieraser'
|
| 147 |
result = pipe(
|
| 148 |
prompt=prompt,
|
| 149 |
-
control_image=input_image
|
| 150 |
-
control_mask=
|
| 151 |
width=H,
|
| 152 |
height=W,
|
| 153 |
num_inference_steps=ddim_steps,
|
|
@@ -156,19 +140,19 @@ def predict(
|
|
| 156 |
max_sequence_length=512,
|
| 157 |
).images[0]
|
| 158 |
|
| 159 |
-
mask_np = np.array(
|
| 160 |
-
red = np.array(input_image
|
| 161 |
red[:, :, 0] = 180.0
|
| 162 |
red[:, :, 2] = 0
|
| 163 |
red[:, :, 1] = 0
|
| 164 |
-
result_m = np.array(input_image
|
| 165 |
result_m = Image.fromarray(
|
| 166 |
(
|
| 167 |
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
|
| 168 |
).astype("uint8")
|
| 169 |
)
|
| 170 |
|
| 171 |
-
dict_res = [input_image
|
| 172 |
|
| 173 |
dict_out = [result]
|
| 174 |
image_path = None
|
|
@@ -178,21 +162,19 @@ def predict(
|
|
| 178 |
|
| 179 |
def infer(
|
| 180 |
input_image,
|
|
|
|
| 181 |
ddim_steps,
|
| 182 |
seed,
|
| 183 |
scale,
|
| 184 |
removal_prompt,
|
| 185 |
|
| 186 |
):
|
| 187 |
-
img_path = image_path
|
| 188 |
-
msk_path = mask_path
|
| 189 |
return predict(input_image,
|
|
|
|
| 190 |
removal_prompt,
|
| 191 |
ddim_steps,
|
| 192 |
seed,
|
| 193 |
scale,
|
| 194 |
-
img_path,
|
| 195 |
-
msk_path
|
| 196 |
)
|
| 197 |
|
| 198 |
def process_example(image_paths, mask_paths):
|
|
@@ -288,13 +270,8 @@ with gr.Blocks(
|
|
| 288 |
gr.Markdown("## 📥 Input Panel")
|
| 289 |
|
| 290 |
with gr.Group():
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
type="pil",
|
| 294 |
-
label="Upload & Annotate",
|
| 295 |
-
elem_id="custom-image",
|
| 296 |
-
interactive=True
|
| 297 |
-
)
|
| 298 |
with gr.Row(variant="compact"):
|
| 299 |
run_button = gr.Button(
|
| 300 |
"🚀 Start Processing",
|
|
@@ -311,21 +288,18 @@ with gr.Blocks(
|
|
| 311 |
step=1,
|
| 312 |
info="-1 for random generation"
|
| 313 |
)
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
# label="Click any example to load",
|
| 327 |
-
# elem_id="inline-examples"
|
| 328 |
-
# )
|
| 329 |
|
| 330 |
with gr.Column(scale=1, variant="panel"):
|
| 331 |
gr.Markdown("## 📤 Output Panel")
|
|
@@ -351,6 +325,7 @@ with gr.Blocks(
|
|
| 351 |
fn=infer,
|
| 352 |
inputs=[
|
| 353 |
input_image,
|
|
|
|
| 354 |
ddim_steps,
|
| 355 |
seed,
|
| 356 |
scale,
|
|
|
|
| 15 |
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
| 16 |
pipe = None
|
| 17 |
torch.set_grad_enabled(False)
|
| 18 |
+
|
| 19 |
+
image_examples = [
|
| 20 |
+
[
|
| 21 |
+
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
|
| 22 |
+
"example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
|
| 23 |
+
],
|
| 24 |
+
[
|
| 25 |
+
"example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
|
| 26 |
+
"example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
|
| 27 |
+
],
|
| 28 |
+
[
|
| 29 |
+
"example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
|
| 30 |
+
"example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
|
| 31 |
+
],
|
| 32 |
+
[
|
| 33 |
+
"example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
|
| 34 |
+
"example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
|
| 35 |
+
],
|
| 36 |
+
[
|
| 37 |
+
"example/image/9a3b6af9-c733-46a4-88d4-d77604194102.png",
|
| 38 |
+
"example/mask/9a3b6af9-c733-46a4-88d4-d77604194102.png"
|
| 39 |
+
],
|
| 40 |
+
[
|
| 41 |
+
"example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
|
| 42 |
+
"example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
|
| 43 |
+
],
|
| 44 |
+
[
|
| 45 |
+
"example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
|
| 46 |
+
"example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
|
| 47 |
+
]
|
| 48 |
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
|
| 52 |
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
| 53 |
lora_path = 'theSure/Omnieraser'
|
| 54 |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
| 55 |
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
|
|
|
|
| 56 |
with torch.no_grad():
|
| 57 |
initial_input_channels = transformer.config.in_channels
|
| 58 |
new_linear = torch.nn.Linear(
|
|
|
|
| 90 |
@spaces.GPU
|
| 91 |
def predict(
|
| 92 |
input_image,
|
| 93 |
+
uploaded_mask
|
| 94 |
prompt,
|
| 95 |
ddim_steps,
|
| 96 |
seed,
|
| 97 |
scale,
|
|
|
|
|
|
|
| 98 |
|
| 99 |
):
|
| 100 |
+
gr.Info(str(f"Set seed = {seed}"))
|
| 101 |
+
size1, size2 = input_image.convert("RGB").size
|
| 102 |
+
icc_profile = input_image.info.get('icc_profile')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
if icc_profile:
|
| 104 |
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
|
| 105 |
srgb_profile = ImageCms.createProfile("sRGB")
|
| 106 |
io_handle = io.BytesIO(icc_profile)
|
| 107 |
src_profile = ImageCms.ImageCmsProfile(io_handle)
|
| 108 |
+
input_image = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
|
| 109 |
+
input_image.info.pop('icc_profile', None)
|
| 110 |
|
| 111 |
if size1 < size2:
|
| 112 |
+
input_image = input_image.convert("RGB").resize((1024, int(size2 / size1 * 1024)))
|
| 113 |
else:
|
| 114 |
+
input_image = input_image.convert("RGB").resize((int(size1 / size2 * 1024), 1024))
|
| 115 |
|
| 116 |
+
img = np.array(input_image.convert("RGB"))
|
| 117 |
|
| 118 |
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
| 119 |
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
| 120 |
|
| 121 |
+
input_image = input_imageresize((H, W))
|
| 122 |
+
uploaded_mask = uploaded_mask.resize((H, W))
|
| 123 |
|
| 124 |
if seed == -1:
|
| 125 |
seed = random.randint(1, 2147483647)
|
| 126 |
set_seed(random.randint(1, 2147483647))
|
| 127 |
else:
|
| 128 |
set_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
| 130 |
lora_path = 'theSure/Omnieraser'
|
| 131 |
result = pipe(
|
| 132 |
prompt=prompt,
|
| 133 |
+
control_image=input_image.convert("RGB"),
|
| 134 |
+
control_mask=uploaded_mask.convert("RGB"),
|
| 135 |
width=H,
|
| 136 |
height=W,
|
| 137 |
num_inference_steps=ddim_steps,
|
|
|
|
| 140 |
max_sequence_length=512,
|
| 141 |
).images[0]
|
| 142 |
|
| 143 |
+
mask_np = np.array(uploaded_mask.convert("RGB"))
|
| 144 |
+
red = np.array(input_image).astype("float") * 1
|
| 145 |
red[:, :, 0] = 180.0
|
| 146 |
red[:, :, 2] = 0
|
| 147 |
red[:, :, 1] = 0
|
| 148 |
+
result_m = np.array(input_image)
|
| 149 |
result_m = Image.fromarray(
|
| 150 |
(
|
| 151 |
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
|
| 152 |
).astype("uint8")
|
| 153 |
)
|
| 154 |
|
| 155 |
+
dict_res = [input_image, uploaded_mask, result_m, result]
|
| 156 |
|
| 157 |
dict_out = [result]
|
| 158 |
image_path = None
|
|
|
|
| 162 |
|
| 163 |
def infer(
|
| 164 |
input_image,
|
| 165 |
+
uploaded_mask,
|
| 166 |
ddim_steps,
|
| 167 |
seed,
|
| 168 |
scale,
|
| 169 |
removal_prompt,
|
| 170 |
|
| 171 |
):
|
|
|
|
|
|
|
| 172 |
return predict(input_image,
|
| 173 |
+
uploaded_mask
|
| 174 |
removal_prompt,
|
| 175 |
ddim_steps,
|
| 176 |
seed,
|
| 177 |
scale,
|
|
|
|
|
|
|
| 178 |
)
|
| 179 |
|
| 180 |
def process_example(image_paths, mask_paths):
|
|
|
|
| 270 |
gr.Markdown("## 📥 Input Panel")
|
| 271 |
|
| 272 |
with gr.Group():
|
| 273 |
+
image_input = gr.Image(label="Upload Image", type="pil", image_mode="RGB")
|
| 274 |
+
uploaded_mask = gr.Image(label="Upload Mask", type="pil", image_mode="L")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
with gr.Row(variant="compact"):
|
| 276 |
run_button = gr.Button(
|
| 277 |
"🚀 Start Processing",
|
|
|
|
| 288 |
step=1,
|
| 289 |
info="-1 for random generation"
|
| 290 |
)
|
| 291 |
+
with gr.Column(variant="panel"):
|
| 292 |
+
gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"])
|
| 293 |
+
example = gr.Examples(
|
| 294 |
+
examples=image_examples,
|
| 295 |
+
inputs=[
|
| 296 |
+
image_input, uploaded_mask
|
| 297 |
+
],
|
| 298 |
+
outputs=[inpaint_result, gallery],
|
| 299 |
+
examples_per_page=10,
|
| 300 |
+
label="Click any example to load",
|
| 301 |
+
elem_id="inline-examples"
|
| 302 |
+
)
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
with gr.Column(scale=1, variant="panel"):
|
| 305 |
gr.Markdown("## 📤 Output Panel")
|
|
|
|
| 325 |
fn=infer,
|
| 326 |
inputs=[
|
| 327 |
input_image,
|
| 328 |
+
uploaded_mask
|
| 329 |
ddim_steps,
|
| 330 |
seed,
|
| 331 |
scale,
|