|
|
|
import threading, time, base64, io, uuid |
|
from dataclasses import dataclass, field |
|
import numpy as np |
|
import soundfile as sf |
|
from magenta_rt import audio as au |
|
from threading import RLock |
|
from utils import ( |
|
match_loudness_to_reference, stitch_generated, hard_trim_seconds, |
|
apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail, |
|
resample_and_snap, wav_bytes_base64 |
|
) |
|
|
|
@dataclass |
|
class JamParams: |
|
bpm: float |
|
beats_per_bar: int |
|
bars_per_chunk: int |
|
target_sr: int |
|
loudness_mode: str = "auto" |
|
headroom_db: float = 1.0 |
|
style_vec: np.ndarray | None = None |
|
ref_loop: any = None |
|
combined_loop: any = None |
|
guidance_weight: float = 1.1 |
|
temperature: float = 1.1 |
|
topk: int = 40 |
|
|
|
@dataclass |
|
class JamChunk: |
|
index: int |
|
audio_base64: str |
|
metadata: dict |
|
|
|
class JamWorker(threading.Thread): |
|
def __init__(self, mrt, params: JamParams): |
|
super().__init__(daemon=True) |
|
self.mrt = mrt |
|
self.params = params |
|
self.state = mrt.init_state() |
|
|
|
|
|
self._lock = threading.Lock() |
|
self._original_context_tokens = None |
|
|
|
if params.combined_loop is not None: |
|
self._setup_context_from_combined_loop() |
|
|
|
self.idx = 0 |
|
self.outbox: list[JamChunk] = [] |
|
self._stop_event = threading.Event() |
|
|
|
self._stream = None |
|
self._next_emit_start = 0 |
|
|
|
|
|
self._last_delivered_index = 0 |
|
self._max_buffer_ahead = 5 |
|
|
|
|
|
self.last_chunk_started_at = None |
|
self.last_chunk_completed_at = None |
|
|
|
|
|
def _setup_context_from_combined_loop(self): |
|
"""Set up MRT context tokens from the combined loop audio""" |
|
try: |
|
from utils import make_bar_aligned_context, take_bar_aligned_tail |
|
|
|
codec_fps = float(self.mrt.codec.frame_rate) |
|
ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps |
|
|
|
loop_for_context = take_bar_aligned_tail( |
|
self.params.combined_loop, |
|
self.params.bpm, |
|
self.params.beats_per_bar, |
|
ctx_seconds |
|
) |
|
|
|
tokens_full = self.mrt.codec.encode(loop_for_context).astype(np.int32) |
|
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth] |
|
|
|
context_tokens = make_bar_aligned_context( |
|
tokens, |
|
bpm=self.params.bpm, |
|
fps=float(self.mrt.codec.frame_rate), |
|
ctx_frames=self.mrt.config.context_length_frames, |
|
beats_per_bar=self.params.beats_per_bar |
|
) |
|
|
|
|
|
self.state.context_tokens = context_tokens |
|
print(f"β
JamWorker: Set up fresh context from combined loop") |
|
|
|
|
|
|
|
with self._lock: |
|
if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None: |
|
self._original_context_tokens = np.copy(context_tokens) |
|
|
|
except Exception as e: |
|
print(f"β Failed to setup context from combined loop: {e}") |
|
|
|
def stop(self): |
|
self._stop_event.set() |
|
|
|
def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None): |
|
with self._lock: |
|
if guidance_weight is not None: self.params.guidance_weight = float(guidance_weight) |
|
if temperature is not None: self.params.temperature = float(temperature) |
|
if topk is not None: self.params.topk = int(topk) |
|
|
|
def get_next_chunk(self) -> JamChunk | None: |
|
"""Get the next sequential chunk (blocks/waits if not ready)""" |
|
target_index = self._last_delivered_index + 1 |
|
|
|
|
|
max_wait = 30.0 |
|
start_time = time.time() |
|
|
|
while time.time() - start_time < max_wait and not self._stop_event.is_set(): |
|
with self._lock: |
|
|
|
for chunk in self.outbox: |
|
if chunk.index == target_index: |
|
self._last_delivered_index = target_index |
|
print(f"π¦ Delivered chunk {target_index}") |
|
return chunk |
|
|
|
|
|
time.sleep(0.1) |
|
|
|
|
|
return None |
|
|
|
def mark_chunk_consumed(self, chunk_index: int): |
|
"""Mark a chunk as consumed by the frontend""" |
|
with self._lock: |
|
self._last_delivered_index = max(self._last_delivered_index, chunk_index) |
|
print(f"β
Chunk {chunk_index} consumed") |
|
|
|
def _should_generate_next_chunk(self) -> bool: |
|
"""Check if we should generate the next chunk (don't get too far ahead)""" |
|
with self._lock: |
|
|
|
if self.idx > self._last_delivered_index + self._max_buffer_ahead: |
|
return False |
|
return True |
|
|
|
def _seconds_per_bar(self) -> float: |
|
return self.params.beats_per_bar * (60.0 / self.params.bpm) |
|
|
|
def _snap_and_encode(self, y, seconds, target_sr, bars): |
|
cur_sr = int(self.mrt.sample_rate) |
|
x = y.samples if y.samples.ndim == 2 else y.samples[:, None] |
|
x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=seconds) |
|
b64, total_samples, channels = wav_bytes_base64(x, target_sr) |
|
meta = { |
|
"bpm": int(round(self.params.bpm)), |
|
"bars": int(bars), |
|
"beats_per_bar": int(self.params.beats_per_bar), |
|
"sample_rate": int(target_sr), |
|
"channels": channels, |
|
"total_samples": total_samples, |
|
"seconds_per_bar": self._seconds_per_bar(), |
|
"loop_duration_seconds": bars * self._seconds_per_bar(), |
|
"guidance_weight": self.params.guidance_weight, |
|
"temperature": self.params.temperature, |
|
"topk": self.params.topk, |
|
} |
|
return b64, meta |
|
|
|
def _append_model_chunk_to_stream(self, wav): |
|
"""Incrementally append a model chunk with equal-power crossfade.""" |
|
xfade_s = float(self.mrt.config.crossfade_length) |
|
sr = int(self.mrt.sample_rate) |
|
xfade_n = int(round(xfade_s * sr)) |
|
|
|
s = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None] |
|
|
|
if getattr(self, "_stream", None) is None: |
|
|
|
if s.shape[0] > xfade_n: |
|
self._stream = s[xfade_n:].astype(np.float32, copy=True) |
|
else: |
|
self._stream = np.zeros((0, s.shape[1]), dtype=np.float32) |
|
self._next_emit_start = 0 |
|
return |
|
|
|
|
|
if s.shape[0] <= xfade_n or self._stream.shape[0] < xfade_n: |
|
|
|
self._stream = np.concatenate([self._stream, s], axis=0) |
|
return |
|
|
|
tail = self._stream[-xfade_n:] |
|
head = s[:xfade_n] |
|
|
|
|
|
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None] |
|
eq_in, eq_out = np.sin(t), np.cos(t) |
|
mixed = tail * eq_out + head * eq_in |
|
|
|
self._stream = np.concatenate([self._stream[:-xfade_n], mixed, s[xfade_n:]], axis=0) |
|
|
|
def reseed_from_waveform(self, wav): |
|
|
|
new_state = self.mrt.init_state() |
|
|
|
|
|
codec_fps = float(self.mrt.codec.frame_rate) |
|
ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps |
|
from utils import take_bar_aligned_tail, make_bar_aligned_context |
|
|
|
tail = take_bar_aligned_tail(wav, self.params.bpm, self.params.beats_per_bar, ctx_seconds) |
|
tokens_full = self.mrt.codec.encode(tail).astype(np.int32) |
|
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth] |
|
context_tokens = make_bar_aligned_context(tokens, |
|
bpm=self.params.bpm, fps=float(self.mrt.codec.frame_rate), |
|
ctx_frames=self.mrt.config.context_length_frames, |
|
beats_per_bar=self.params.beats_per_bar |
|
) |
|
new_state.context_tokens = context_tokens |
|
self.state = new_state |
|
self._prepare_stream_for_reseed_handoff() |
|
|
|
def _frames_per_bar(self) -> int: |
|
|
|
fps = float(self.mrt.codec.frame_rate) |
|
sec_per_bar = (60.0 / float(self.params.bpm)) * float(self.params.beats_per_bar) |
|
return int(round(fps * sec_per_bar)) |
|
|
|
def _ctx_frames(self) -> int: |
|
|
|
return int(self.mrt.config.context_length_frames) |
|
|
|
def _make_recent_tokens_from_wave(self, wav) -> np.ndarray: |
|
""" |
|
Encode waveform and produce a BAR-ALIGNED context token window. |
|
""" |
|
tokens_full = self.mrt.codec.encode(wav).astype(np.int32) |
|
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth] |
|
|
|
from utils import make_bar_aligned_context |
|
ctx = make_bar_aligned_context( |
|
tokens, |
|
bpm=self.params.bpm, |
|
fps=float(self.mrt.codec.frame_rate), |
|
ctx_frames=self.mrt.config.context_length_frames, |
|
beats_per_bar=self.params.beats_per_bar |
|
) |
|
return ctx |
|
|
|
def _bar_aligned_tail(self, tokens: np.ndarray, bars: float) -> np.ndarray: |
|
""" |
|
Take a tail slice that is an integer number of codec frames corresponding to `bars`. |
|
We round to nearest frame to stay phase-consistent with codec grid. |
|
""" |
|
frames_per_bar = self._frames_per_bar() |
|
want = max(frames_per_bar * int(round(bars)), 0) |
|
if want == 0: |
|
return tokens[:0] |
|
if tokens.shape[0] <= want: |
|
return tokens |
|
return tokens[-want:] |
|
|
|
def _splice_context(self, original_tokens: np.ndarray, recent_tokens: np.ndarray, |
|
anchor_bars: float) -> np.ndarray: |
|
import math |
|
ctx_frames = self._ctx_frames() |
|
depth = original_tokens.shape[1] |
|
frames_per_bar = self._frames_per_bar() |
|
|
|
|
|
anchor = self._bar_aligned_tail(original_tokens, math.floor(anchor_bars)) |
|
|
|
|
|
a = anchor.shape[0] |
|
remain = max(ctx_frames - a, 0) |
|
|
|
recent = recent_tokens[:0] |
|
used_recent = 0 |
|
if remain > 0: |
|
bars_fit = remain // frames_per_bar |
|
if bars_fit >= 1: |
|
want_recent_frames = int(bars_fit * frames_per_bar) |
|
used_recent = min(want_recent_frames, recent_tokens.shape[0]) |
|
recent = recent_tokens[-used_recent:] if used_recent > 0 else recent_tokens[:0] |
|
else: |
|
used_recent = min(remain, recent_tokens.shape[0]) |
|
recent = recent_tokens[-used_recent:] if used_recent > 0 else recent_tokens[:0] |
|
|
|
|
|
if anchor.size or recent.size: |
|
out = np.concatenate([anchor, recent], axis=0) |
|
else: |
|
|
|
out = recent_tokens[-ctx_frames:] |
|
|
|
|
|
if out.shape[0] > ctx_frames: |
|
out = out[-ctx_frames:] |
|
|
|
|
|
if frames_per_bar > 0: |
|
max_bar_aligned = (out.shape[0] // frames_per_bar) * frames_per_bar |
|
else: |
|
max_bar_aligned = out.shape[0] |
|
if max_bar_aligned > 0 and out.shape[0] != max_bar_aligned: |
|
out = out[-max_bar_aligned:] |
|
|
|
|
|
deficit = ctx_frames - out.shape[0] |
|
if deficit > 0: |
|
left_parts = [] |
|
|
|
|
|
if used_recent < recent_tokens.shape[0]: |
|
take = min(deficit, recent_tokens.shape[0] - used_recent) |
|
if used_recent > 0: |
|
left_parts.append(recent_tokens[-(used_recent + take) : -used_recent]) |
|
else: |
|
left_parts.append(recent_tokens[-take:]) |
|
|
|
|
|
if sum(p.shape[0] for p in left_parts) < deficit and anchor.shape[0] > 0: |
|
need = deficit - sum(p.shape[0] for p in left_parts) |
|
a_len = anchor.shape[0] |
|
avail = max(original_tokens.shape[0] - a_len, 0) |
|
take2 = min(need, avail) |
|
if take2 > 0: |
|
left_parts.append(original_tokens[-(a_len + take2) : -a_len]) |
|
|
|
|
|
have = sum(p.shape[0] for p in left_parts) |
|
if have < deficit: |
|
base = out if out.shape[0] > 0 else (recent_tokens if recent_tokens.shape[0] > 0 else original_tokens) |
|
reps = int(np.ceil((deficit - have) / max(1, base.shape[0]))) |
|
left_parts.append(np.tile(base, (reps, 1))[: (deficit - have)]) |
|
|
|
left = np.concatenate(left_parts, axis=0) |
|
out = np.concatenate([left[-deficit:], out], axis=0) |
|
|
|
|
|
if out.shape[0] > ctx_frames: |
|
out = out[-ctx_frames:] |
|
elif out.shape[0] < ctx_frames: |
|
reps = int(np.ceil(ctx_frames / max(1, out.shape[0]))) |
|
out = np.tile(out, (reps, 1))[-ctx_frames:] |
|
|
|
|
|
if out.shape[1] != depth: |
|
out = out[:, :depth] |
|
return out |
|
|
|
|
|
def _realign_emit_pointer_to_bar(self, sr_model: int): |
|
"""Advance _next_emit_start to the next bar boundary in model-sample space.""" |
|
bar_samps = int(round(self._seconds_per_bar() * sr_model)) |
|
if bar_samps <= 0: |
|
return |
|
phase = self._next_emit_start % bar_samps |
|
if phase != 0: |
|
self._next_emit_start += (bar_samps - phase) |
|
|
|
def _prepare_stream_for_reseed_handoff(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._stream = None |
|
|
|
self._next_emit_start = 0 |
|
self._needs_bar_realign = True |
|
|
|
def reseed_splice(self, recent_wav, anchor_bars: float): |
|
""" |
|
Token-splice reseed: |
|
- original = the context we captured when the jam started |
|
- recent = tokens from the provided recent waveform (usually Swift-combined mix) |
|
- anchor_bars controls how much of the original vibe we re-inject |
|
""" |
|
with self._lock: |
|
if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None: |
|
|
|
self._original_context_tokens = np.copy(self.state.context_tokens) |
|
|
|
recent_tokens = self._make_recent_tokens_from_wave(recent_wav) |
|
new_ctx = self._splice_context(self._original_context_tokens, recent_tokens, anchor_bars) |
|
|
|
|
|
new_state = self.mrt.init_state() |
|
new_state.context_tokens = new_ctx |
|
self.state = new_state |
|
|
|
self._prepare_stream_for_reseed_handoff() |
|
|
|
|
|
self._pending_drop_intro_bars = getattr(self, "_pending_drop_intro_bars", 0) + 1 |
|
|
|
def run(self): |
|
"""Main worker loop β generate into a continuous stream, then emit bar-aligned slices.""" |
|
spb = self._seconds_per_bar() |
|
chunk_secs = self.params.bars_per_chunk * spb |
|
xfade = float(self.mrt.config.crossfade_length) |
|
sr = int(self.mrt.sample_rate) |
|
chunk_samps = int(round(chunk_secs * sr)) |
|
|
|
def _need(first_chunk_extra=False): |
|
"""How many more samples we still need in the stream to emit next slice.""" |
|
have = 0 if getattr(self, "_stream", None) is None else self._stream.shape[0] - getattr(self, "_next_emit_start", 0) |
|
want = chunk_samps |
|
if first_chunk_extra: |
|
|
|
want += int(round(2 * spb * sr)) |
|
return max(0, want - have) |
|
|
|
def _mono_env(x: np.ndarray, sr: int, win_ms: float = 10.0) -> np.ndarray: |
|
if x.ndim == 2: x = x.mean(axis=1) |
|
x = np.abs(x).astype(np.float32) |
|
w = max(1, int(round(win_ms * 1e-3 * sr))) |
|
if w > 1: |
|
kern = np.ones(w, dtype=np.float32) / float(w) |
|
x = np.convolve(x, kern, mode="same") |
|
d = np.diff(x, prepend=x[:1]) |
|
d[d < 0] = 0.0 |
|
return d |
|
|
|
def _estimate_first_offset_samples(ref_loop_wav, gen_head_wav, sr: int, spb: float) -> int: |
|
"""Tempo-aware first-downbeat offset (positive => model late).""" |
|
try: |
|
max_ms = int(max(160.0, min(0.25 * spb * 1000.0, 450.0))) |
|
ref = ref_loop_wav if ref_loop_wav.sample_rate == sr else ref_loop_wav.resample(sr) |
|
n_bar = int(round(spb * sr)) |
|
ref_tail = ref.samples[-n_bar:, :] if ref.samples.shape[0] >= n_bar else ref.samples |
|
gen_head = gen_head_wav.samples[: int(2 * n_bar), :] |
|
if ref_tail.size == 0 or gen_head.size == 0: |
|
return 0 |
|
|
|
|
|
import numpy as np |
|
def _z(a): |
|
m, s = float(a.mean()), float(a.std() or 1.0); return (a - m) / s |
|
e_ref = _z(_mono_env(ref_tail, sr)).astype(np.float32) |
|
e_gen = _z(_mono_env(gen_head, sr)).astype(np.float32) |
|
|
|
|
|
def _upsample(a, r=4): |
|
n = len(a); grid = np.arange(n, dtype=np.float32) |
|
fine = np.linspace(0, n - 1, num=n * r, dtype=np.float32) |
|
return np.interp(fine, grid, a).astype(np.float32) |
|
up = 4 |
|
e_ref_u, e_gen_u = _upsample(e_ref, up), _upsample(e_gen, up) |
|
|
|
max_lag_u = int(round((max_ms / 1000.0) * sr * up)) |
|
seg = min(len(e_ref_u), len(e_gen_u)) |
|
e_ref_u = e_ref_u[-seg:] |
|
pad = np.zeros(max_lag_u, dtype=np.float32) |
|
e_gen_u_pad = np.concatenate([pad, e_gen_u, pad]) |
|
|
|
best_lag_u, best_score = 0, -1e9 |
|
for lag_u in range(-max_lag_u, max_lag_u + 1): |
|
start = max_lag_u + lag_u |
|
b = e_gen_u_pad[start : start + seg] |
|
denom = (np.linalg.norm(e_ref_u) * np.linalg.norm(b)) or 1.0 |
|
score = float(np.dot(e_ref_u, b) / denom) |
|
if score > best_score: |
|
best_score, best_lag_u = score, lag_u |
|
return int(round(best_lag_u / up)) |
|
except Exception: |
|
return 0 |
|
|
|
print("π JamWorker started (bar-aligned streaming)β¦") |
|
|
|
while not self._stop_event.is_set(): |
|
if not self._should_generate_next_chunk(): |
|
time.sleep(0.25) |
|
continue |
|
|
|
|
|
need = _need(first_chunk_extra=(self.idx == 0)) |
|
while need > 0 and not self._stop_event.is_set(): |
|
with self._lock: |
|
style_vec = self.params.style_vec |
|
self.mrt.guidance_weight = float(self.params.guidance_weight) |
|
self.mrt.temperature = float(self.params.temperature) |
|
self.mrt.topk = int(self.params.topk) |
|
wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec) |
|
self._append_model_chunk_to_stream(wav) |
|
need = _need(first_chunk_extra=(self.idx == 0)) |
|
|
|
if self._stop_event.is_set(): |
|
break |
|
|
|
|
|
if self.idx == 0 and self.params.combined_loop is not None: |
|
|
|
head_len = min(self._stream.shape[0] - self._next_emit_start, int(round(2 * spb * sr))) |
|
seg = self._stream[self._next_emit_start : self._next_emit_start + head_len] |
|
gen_head = au.Waveform(seg.astype(np.float32, copy=False), sr).as_stereo() |
|
offs = _estimate_first_offset_samples(self.params.combined_loop, gen_head, sr, spb) |
|
if offs != 0: |
|
|
|
self._next_emit_start = max(0, self._next_emit_start + offs) |
|
print(f"π― First-chunk offset compensation: {offs/sr:+.3f}s") |
|
|
|
self._realign_emit_pointer_to_bar(sr) |
|
|
|
|
|
start = self._next_emit_start |
|
end = start + chunk_samps |
|
if end > self._stream.shape[0]: |
|
|
|
continue |
|
|
|
slice_ = self._stream[start:end] |
|
self._next_emit_start = end |
|
|
|
y = au.Waveform(slice_.astype(np.float32, copy=False), sr).as_stereo() |
|
|
|
|
|
if self.idx == 0 and self.params.ref_loop is not None: |
|
y, _ = match_loudness_to_reference( |
|
self.params.ref_loop, y, |
|
method=self.params.loudness_mode, |
|
headroom_db=self.params.headroom_db |
|
) |
|
else: |
|
apply_micro_fades(y, 3) |
|
|
|
|
|
b64, meta = self._snap_and_encode( |
|
y, seconds=chunk_secs, target_sr=self.params.target_sr, bars=self.params.bars_per_chunk |
|
) |
|
meta["xfade_seconds"] = xfade |
|
|
|
|
|
with self._lock: |
|
self.idx += 1 |
|
self.outbox.append(JamChunk(index=self.idx, audio_base64=b64, metadata=meta)) |
|
if len(self.outbox) > 10: |
|
cutoff = self._last_delivered_index - 5 |
|
self.outbox = [ch for ch in self.outbox if ch.index > cutoff] |
|
|
|
print(f"β
Completed chunk {self.idx}") |
|
|
|
print("π JamWorker stopped") |
|
|
|
|