File size: 10,088 Bytes
f70477a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from magenta_rt import system, audio as au
import numpy as np
from fastapi import FastAPI, UploadFile, File, Form
import tempfile, io, base64, math, threading
from fastapi.middleware.cors import CORSMiddleware

# loudness utils
try:
    import pyloudnorm as pyln
    _HAS_LOUDNORM = True
except Exception:
    _HAS_LOUDNORM = False

def _measure_lufs(wav: au.Waveform) -> float:
    # pyloudnorm expects float32/float64, shape (n,) or (n, ch)
    meter = pyln.Meter(wav.sample_rate)  # defaults to BS.1770-4
    return float(meter.integrated_loudness(wav.samples))

def _rms(x: np.ndarray) -> float:
    if x.size == 0: return 0.0
    return float(np.sqrt(np.mean(x**2)))

def match_loudness_to_reference(
    ref: au.Waveform,
    target: au.Waveform,
    method: str = "auto",   # "auto"|"lufs"|"rms"|"none"
    headroom_db: float = 1.0
) -> tuple[au.Waveform, dict]:
    """
    Scales `target` to match `ref` loudness. Returns (adjusted_wave, stats).
    """
    stats = {"method": method, "applied_gain_db": 0.0}

    if method == "none":
        return target, stats

    if method == "auto":
        method = "lufs" if _HAS_LOUDNORM else "rms"

    if method == "lufs" and _HAS_LOUDNORM:
        L_ref = _measure_lufs(ref)
        L_tgt = _measure_lufs(target)
        delta_db = L_ref - L_tgt
        gain = 10.0 ** (delta_db / 20.0)
        y = target.samples.astype(np.float32) * gain
        stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db})
    else:
        # RMS fallback
        ra = _rms(ref.samples)
        rb = _rms(target.samples)
        if rb <= 1e-12:
            return target, stats
        gain = ra / rb
        y = target.samples.astype(np.float32) * gain
        stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))})

    # simple peak “limiter” to keep headroom
    limit = 10 ** (-headroom_db / 20.0)   # e.g., -1 dBFS
    peak = float(np.max(np.abs(y))) if y.size else 0.0
    if peak > limit:
        y *= (limit / peak)
        stats["post_peak_limited"] = True
    else:
        stats["post_peak_limited"] = False

    target.samples = y.astype(np.float32)
    return target, stats

# ----------------------------
# Crossfade stitch (your good path)
# ----------------------------
def stitch_generated(chunks, sr, xfade_s):
    if not chunks:
        raise ValueError("no chunks")
    xfade_n = int(round(xfade_s * sr))
    if xfade_n <= 0:
        return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr)

    t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)
    eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None]

    first = chunks[0].samples
    if first.shape[0] < xfade_n:
        raise ValueError("chunk shorter than crossfade prefix")
    out = first[xfade_n:].copy()  # drop model pre-roll

    for i in range(1, len(chunks)):
        cur = chunks[i].samples
        if cur.shape[0] < xfade_n:
            continue
        head, tail = cur[:xfade_n], cur[xfade_n:]
        mixed = out[-xfade_n:] * eq_out + head * eq_in
        out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0)

    return au.Waveform(out, sr)

# ----------------------------
# Bar-aligned token context
# ----------------------------
def make_bar_aligned_context(tokens, bpm, fps=25, ctx_frames=250, beats_per_bar=4):
    frames_per_bar_f = (beats_per_bar * 60.0 / bpm) * fps
    frames_per_bar = int(round(frames_per_bar_f))
    if abs(frames_per_bar - frames_per_bar_f) > 1e-3:
        reps = int(np.ceil(ctx_frames / len(tokens)))
        return np.tile(tokens, (reps, 1))[-ctx_frames:]
    reps = int(np.ceil(ctx_frames / len(tokens)))
    tiled = np.tile(tokens, (reps, 1))
    end = (len(tiled) // frames_per_bar) * frames_per_bar
    if end < ctx_frames:
        return tiled[-ctx_frames:]
    start = end - ctx_frames
    return tiled[start:end]

def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform:
    n = int(round(seconds * wav.sample_rate))
    return au.Waveform(wav.samples[:n], wav.sample_rate)

def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None:
    n = int(wav.sample_rate * ms / 1000.0)
    if n > 0 and wav.samples.shape[0] > 2*n:
        env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None]
        wav.samples[:n]  *= env
        wav.samples[-n:] *= env[::-1]

# ----------------------------
# Main generation (single combined style vector)
# ----------------------------
def generate_loop_continuation_with_mrt(
    mrt,
    input_wav_path: str,
    bpm: float,
    extra_styles=None,
    style_weights=None,
    bars: int = 8,
    beats_per_bar: int = 4,
    loop_weight: float = 1.0,           # NEW
    loudness_mode: str = "auto",        # "auto"|"lufs"|"rms"|"none"
    loudness_headroom_db: float = 1.0,  # for the peak guard
):
    # Load loop & encode
    loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
    tokens_full = mrt.codec.encode(loop).astype(np.int32)
    tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]

    # Context
    context_tokens = make_bar_aligned_context(
        tokens,
        bpm=bpm,
        fps=int(mrt.codec.frame_rate),
        ctx_frames=mrt.config.context_length_frames,
        beats_per_bar=beats_per_bar,
    )
    state = mrt.init_state()
    state.context_tokens = context_tokens

    # ---------- STYLE: weighted avg into ONE vector ----------
    # Base embed from loop with adjustable loop_weight
    embeds = []
    weights = []

    # loop embedding
    loop_embed = mrt.embed_style(loop)
    embeds.append(loop_embed)
    weights.append(float(loop_weight))  # <--- use requested loop weight

    # extra styles
    if extra_styles:
        for i, s in enumerate(extra_styles):
            if s.strip():
                embeds.append(mrt.embed_style(s.strip()))
                w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
                weights.append(float(w))

    # Prevent all-zero weights; normalize
    wsum = float(sum(weights))
    if wsum <= 0.0:
        # fallback: rely on loop to avoid NaNs
        weights = [1.0] + [0.0] * (len(weights) - 1)
        wsum = 1.0

    weights = [w / wsum for w in weights]

    # weighted sum -> single style vector (match dtype)
    combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)

    # Chunks to cover exact bars
    seconds_per_bar = beats_per_bar * (60.0 / bpm)
    total_secs = bars * seconds_per_bar
    chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate  # ~2.0
    steps = int(math.ceil(total_secs / chunk_secs)) + 1  # pad then trim

    # Generate
    chunks = []
    for _ in range(steps):
        wav, state = mrt.generate_chunk(state=state, style=combined_style)  # ONE style vector
        chunks.append(wav)

    # Stitch -> trim -> polish
    out = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
    out = hard_trim_seconds(out, total_secs).peak_normalize(0.95)
    apply_micro_fades(out, 5)
    # Loudness match to the *input loop* so the return level feels consistent
    out, loud_stats = match_loudness_to_reference(
        ref=loop, target=out,
        method=loudness_mode,
        headroom_db=loudness_headroom_db,
    )
    return out, loud_stats

# ----------------------------
# FastAPI app with lazy, thread-safe model init
# ----------------------------
app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],   # or lock to your domain(s)
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

_MRT = None
_MRT_LOCK = threading.Lock()

def get_mrt():
    global _MRT
    if _MRT is None:
        with _MRT_LOCK:
            if _MRT is None:
                _MRT = system.MagentaRT(tag="base", guidance_weight=1.0, device="gpu", lazy=False)
    return _MRT

@app.post("/generate")
def generate(
    loop_audio: UploadFile = File(...),
    bpm: float = Form(...),
    bars: int = Form(8),
    beats_per_bar: int = Form(4),
    styles: str = Form("acid house"),
    style_weights: str = Form(""),
    loop_weight: float = Form(1.0),               # NEW
    loudness_mode: str = Form("auto"),            # NEW
    loudness_headroom_db: float = Form(1.0),      # NEW
):
    # Read file
    data = loop_audio.file.read()
    if not data:
        return {"error": "Empty file"}
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
        tmp.write(data)
        tmp_path = tmp.name

    # Parse styles + weights
    extra_styles = [s for s in (styles.split(",") if styles else []) if s.strip()]
    weights = [float(x) for x in style_weights.split(",")] if style_weights else None

    mrt = get_mrt()  # warm once, in this worker thread
    mrt = get_mrt()
    wav, loud_stats = generate_loop_continuation_with_mrt(
        mrt,
        input_wav_path=tmp_path,
        bpm=bpm,
        extra_styles=extra_styles,
        style_weights=weights,
        bars=bars,
        beats_per_bar=beats_per_bar,
        loop_weight=loop_weight,
        loudness_mode=loudness_mode,
        loudness_headroom_db=loudness_headroom_db,
    )

    # Return base64 WAV + minimal metadata
    buf = io.BytesIO()
    # add format="WAV" when writing to a file-like object
    wav.write(buf, subtype="FLOAT", format="WAV")
    buf.seek(0)
    audio_b64 = base64.b64encode(buf.read()).decode("utf-8")

    return {
        "audio_base64": audio_b64,
        "metadata": {
            "bpm": int(round(bpm)),
            "bars": int(bars),
            "beats_per_bar": int(beats_per_bar),
            "styles": extra_styles,
            "style_weights": weights,
            "loop_weight": loop_weight,
            "loudness": loud_stats,                       # NEW
            "sample_rate": mrt.sample_rate,
            "channels": mrt.num_channels,
            "crossfade_seconds": mrt.config.crossfade_length,
        },
    }

@app.get("/health")
def health():
    return {"ok": True}