File size: 13,695 Bytes
f70477a
 
 
 
 
ede0049
f8b3793
 
 
 
ede0049
 
 
 
 
 
 
 
 
 
 
 
 
 
f70477a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0aea5
241e975
 
 
 
6d0aea5
09491d9
241e975
6d0aea5
 
 
241e975
 
 
 
 
f70477a
 
 
 
 
 
 
 
 
 
 
c4aed03
 
 
 
f70477a
c4aed03
f70477a
241e975
c4aed03
 
 
 
241e975
 
f70477a
 
c4aed03
f70477a
c4aed03
 
f70477a
 
 
 
c4aed03
 
 
f70477a
 
 
 
 
 
c4aed03
f70477a
 
 
c4aed03
f70477a
c4aed03
 
 
 
 
 
f70477a
c4aed03
f70477a
 
 
 
c4aed03
f70477a
 
c4aed03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f70477a
c4aed03
 
f70477a
 
c4aed03
f70477a
c4aed03
f70477a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ede0049
 
 
 
 
 
c4aed03
 
f70477a
 
 
 
 
 
 
 
 
 
 
 
 
 
ede0049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4aed03
ede0049
f70477a
f8b3793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf69d0
f8b3793
8cf69d0
f8b3793
 
 
 
 
 
 
 
 
 
8cf69d0
f8b3793
f70477a
f8b3793
f70477a
 
 
f8b3793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f70477a
f8b3793
f70477a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from magenta_rt import system, audio as au
import numpy as np
from fastapi import FastAPI, UploadFile, File, Form
import tempfile, io, base64, math, threading
from fastapi.middleware.cors import CORSMiddleware
from contextlib import contextmanager
import soundfile as sf
import numpy as np
from math import gcd
from scipy.signal import resample_poly

@contextmanager
def mrt_overrides(mrt, **kwargs):
    """Temporarily set attributes on MRT if they exist; restore after."""
    old = {}
    try:
        for k, v in kwargs.items():
            if hasattr(mrt, k):
                old[k] = getattr(mrt, k)
                setattr(mrt, k, v)
        yield
    finally:
        for k, v in old.items():
            setattr(mrt, k, v)

# loudness utils
try:
    import pyloudnorm as pyln
    _HAS_LOUDNORM = True
except Exception:
    _HAS_LOUDNORM = False

def _measure_lufs(wav: au.Waveform) -> float:
    # pyloudnorm expects float32/float64, shape (n,) or (n, ch)
    meter = pyln.Meter(wav.sample_rate)  # defaults to BS.1770-4
    return float(meter.integrated_loudness(wav.samples))

def _rms(x: np.ndarray) -> float:
    if x.size == 0: return 0.0
    return float(np.sqrt(np.mean(x**2)))

def match_loudness_to_reference(
    ref: au.Waveform,
    target: au.Waveform,
    method: str = "auto",   # "auto"|"lufs"|"rms"|"none"
    headroom_db: float = 1.0
) -> tuple[au.Waveform, dict]:
    """
    Scales `target` to match `ref` loudness. Returns (adjusted_wave, stats).
    """
    stats = {"method": method, "applied_gain_db": 0.0}

    if method == "none":
        return target, stats

    if method == "auto":
        method = "lufs" if _HAS_LOUDNORM else "rms"

    if method == "lufs" and _HAS_LOUDNORM:
        L_ref = _measure_lufs(ref)
        L_tgt = _measure_lufs(target)
        delta_db = L_ref - L_tgt
        gain = 10.0 ** (delta_db / 20.0)
        y = target.samples.astype(np.float32) * gain
        stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db})
    else:
        # RMS fallback
        ra = _rms(ref.samples)
        rb = _rms(target.samples)
        if rb <= 1e-12:
            return target, stats
        gain = ra / rb
        y = target.samples.astype(np.float32) * gain
        stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))})

    # simple peak “limiter” to keep headroom
    limit = 10 ** (-headroom_db / 20.0)   # e.g., -1 dBFS
    peak = float(np.max(np.abs(y))) if y.size else 0.0
    if peak > limit:
        y *= (limit / peak)
        stats["post_peak_limited"] = True
    else:
        stats["post_peak_limited"] = False

    target.samples = y.astype(np.float32)
    return target, stats

# ----------------------------
# Crossfade stitch (your good path)
# ----------------------------
def stitch_generated(chunks, sr, xfade_s):
    if not chunks:
        raise ValueError("no chunks")
    xfade_n = int(round(xfade_s * sr))
    if xfade_n <= 0:
        return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr)

    t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)
    eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None]

    first = chunks[0].samples
    if first.shape[0] < xfade_n:
        raise ValueError("chunk shorter than crossfade prefix")
    out = first[xfade_n:].copy()  # drop model pre-roll

    for i in range(1, len(chunks)):
        cur = chunks[i].samples
        if cur.shape[0] < xfade_n:
            continue
        head, tail = cur[:xfade_n], cur[xfade_n:]
        mixed = out[-xfade_n:] * eq_out + head * eq_in
        out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0)

    return au.Waveform(out, sr)

# ----------------------------
# Bar-aligned token context
# ----------------------------
def make_bar_aligned_context(tokens, bpm, fps=25, ctx_frames=250, beats_per_bar=4):
    frames_per_bar_f = (beats_per_bar * 60.0 / bpm) * fps
    frames_per_bar = int(round(frames_per_bar_f))
    if abs(frames_per_bar - frames_per_bar_f) > 1e-3:
        reps = int(np.ceil(ctx_frames / len(tokens)))
        return np.tile(tokens, (reps, 1))[-ctx_frames:]
    reps = int(np.ceil(ctx_frames / len(tokens)))
    tiled = np.tile(tokens, (reps, 1))
    end = (len(tiled) // frames_per_bar) * frames_per_bar
    if end < ctx_frames:
        return tiled[-ctx_frames:]
    start = end - ctx_frames
    return tiled[start:end]

def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform:
    n = int(round(seconds * wav.sample_rate))
    return au.Waveform(wav.samples[:n], wav.sample_rate)

def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None:
    n = int(wav.sample_rate * ms / 1000.0)
    if n > 0 and wav.samples.shape[0] > 2*n:
        env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None]
        wav.samples[:n]  *= env
        wav.samples[-n:] *= env[::-1]

def take_bar_aligned_tail(wav, bpm, beats_per_bar, ctx_seconds, max_bars=None):
    """
    Return the LAST N bars whose duration is as close as possible to ctx_seconds,
    anchored to the end of `wav`, and bar-aligned.
    """
    spb = (60.0 / bpm) * beats_per_bar
    
    bars_needed = max(1, int(round(ctx_seconds / spb)))
    if max_bars is not None:
        bars_needed = min(bars_needed, max_bars)
    tail_seconds = bars_needed * spb
    n = int(round(tail_seconds * wav.sample_rate))
    if n >= wav.samples.shape[0]:
        return wav
    return au.Waveform(wav.samples[-n:], wav.sample_rate)

# ----------------------------
# Main generation (single combined style vector)
# ----------------------------
def generate_loop_continuation_with_mrt(
    mrt,
    input_wav_path: str,
    bpm: float,
    extra_styles=None,
    style_weights=None,
    bars: int = 8,
    beats_per_bar: int = 4,
    loop_weight: float = 1.0,
    loudness_mode: str = "auto",
    loudness_headroom_db: float = 1.0,
    intro_bars_to_drop: int = 0,             # <— NEW
):
    # Load & prep (unchanged)
    loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()

    # Use tail for context (your recent change)
    codec_fps   = float(mrt.codec.frame_rate)
    ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
    loop_for_context = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)

    tokens_full = mrt.codec.encode(loop_for_context).astype(np.int32)
    tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]

    # Bar-aligned token window (unchanged)
    context_tokens = make_bar_aligned_context(
        tokens, bpm=bpm, fps=int(mrt.codec.frame_rate),
        ctx_frames=mrt.config.context_length_frames, beats_per_bar=beats_per_bar
    )
    state = mrt.init_state()
    state.context_tokens = context_tokens

    # STYLE embed (optional: switch to loop_for_context if you want stronger “recent” bias)
    loop_embed = mrt.embed_style(loop_for_context)
    embeds, weights = [loop_embed], [float(loop_weight)]
    if extra_styles:
        for i, s in enumerate(extra_styles):
            if s.strip():
                embeds.append(mrt.embed_style(s.strip()))
                w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
                weights.append(float(w))
    wsum = float(sum(weights)) or 1.0
    weights = [w / wsum for w in weights]
    combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)

    # --- Length math ---
    seconds_per_bar = beats_per_bar * (60.0 / bpm)
    total_secs      = bars * seconds_per_bar
    drop_bars       = max(0, int(intro_bars_to_drop))
    drop_secs       = min(drop_bars, bars) * seconds_per_bar       # clamp to <= bars
    gen_total_secs  = total_secs + drop_secs                       # generate extra

    # Chunk scheduling to cover gen_total_secs
    chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate  # ~2.0
    steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1  # pad then trim

    # Generate
    chunks = []
    for _ in range(steps):
        wav, state = mrt.generate_chunk(state=state, style=combined_style)
        chunks.append(wav)

    # Stitch continuous audio
    stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()

    # Trim to generated length (bars + dropped bars)
    stitched = hard_trim_seconds(stitched, gen_total_secs)

    # 👉 Drop the intro bars
    if drop_secs > 0:
        n_drop = int(round(drop_secs * stitched.sample_rate))
        stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)

    # Final exact-length trim to requested bars
    out = hard_trim_seconds(stitched, total_secs)

    # Final polish AFTER drop
    out = out.peak_normalize(0.95)
    apply_micro_fades(out, 5)

    # Loudness match to input (after drop) so bar 1 sits right
    out, loud_stats = match_loudness_to_reference(
        ref=loop, target=out,
        method=loudness_mode, headroom_db=loudness_headroom_db
    )

    return out, loud_stats

# ----------------------------
# FastAPI app with lazy, thread-safe model init
# ----------------------------
app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],   # or lock to your domain(s)
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

_MRT = None
_MRT_LOCK = threading.Lock()

def get_mrt():
    global _MRT
    if _MRT is None:
        with _MRT_LOCK:
            if _MRT is None:
                _MRT = system.MagentaRT(tag="base", guidance_weight=1.0, device="gpu", lazy=False)
    return _MRT

@app.post("/generate")
def generate(
    loop_audio: UploadFile = File(...),
    bpm: float = Form(...),
    bars: int = Form(8),
    beats_per_bar: int = Form(4),
    styles: str = Form("acid house"),
    style_weights: str = Form(""),
    loop_weight: float = Form(1.0),
    loudness_mode: str = Form("auto"),
    loudness_headroom_db: float = Form(1.0),
    guidance_weight: float = Form(5.0),
    temperature: float = Form(1.1),
    topk: int = Form(40),
    target_sample_rate: int | None = Form(None),
    intro_bars_to_drop: int = Form(0),          # <— NEW
):
    # Read file
    data = loop_audio.file.read()
    if not data:
        return {"error": "Empty file"}
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
        tmp.write(data)
        tmp_path = tmp.name

    # Parse styles + weights
    extra_styles = [s for s in (styles.split(",") if styles else []) if s.strip()]
    weights = [float(x) for x in style_weights.split(",")] if style_weights else None

    mrt = get_mrt()  # warm once, in this worker thread
    # Temporarily override MRT inference knobs for this request
    with mrt_overrides(mrt,
                       guidance_weight=guidance_weight,
                       temperature=temperature,
                       topk=topk):
        wav, loud_stats = generate_loop_continuation_with_mrt(
            mrt,
            input_wav_path=tmp_path,
            bpm=bpm,
            extra_styles=extra_styles,
            style_weights=weights,
            bars=bars,
            beats_per_bar=beats_per_bar,
            loop_weight=loop_weight,
            loudness_mode=loudness_mode,
            loudness_headroom_db=loudness_headroom_db,
            intro_bars_to_drop=intro_bars_to_drop,   # <— pass through
        )

    # 1) Figure out the desired SR
    inp_info = sf.info(tmp_path)
    input_sr = int(inp_info.samplerate)
    target_sr = int(target_sample_rate or input_sr)

    # 2) Convert magenta output to target_sr if needed
    # wav.samples: shape [num_samples, num_channels], float32/-1..1 (per your code)
    cur_sr = int(mrt.sample_rate)
    x = wav.samples  # np.ndarray (S, C)

    if cur_sr != target_sr:
        g = gcd(cur_sr, target_sr)
        up, down = target_sr // g, cur_sr // g
        # ensure 2D shape (S, C)
        x = wav.samples
        if x.ndim == 1:
            x = x[:, None]
        y = np.column_stack([resample_poly(x[:, ch], up, down) for ch in range(x.shape[1])])
    else:
        y = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]

    # 3) Snap to exact frame count for loop-perfect length
    seconds_per_bar = (60.0 / float(bpm)) * int(beats_per_bar)
    expected_len = int(round(float(bars) * seconds_per_bar * target_sr))

    if y.shape[0] < expected_len:
        pad = np.zeros((expected_len - y.shape[0], y.shape[1]), dtype=y.dtype)
        y = np.vstack([y, pad])
    elif y.shape[0] > expected_len:
        y = y[:expected_len, :]

    total_samples = int(y.shape[0])
    loop_duration_seconds = total_samples / float(target_sr)

    # 4) Write y into buf as WAV @ target_sr
    buf = io.BytesIO()
    sf.write(buf, y, target_sr, subtype="FLOAT", format="WAV")
    buf.seek(0)
    audio_b64 = base64.b64encode(buf.read()).decode("utf-8")

    # 5) Update metadata to be authoritative
    metadata = {
        "bpm": int(round(bpm)),
        "bars": int(bars),
        "beats_per_bar": int(beats_per_bar),
        "styles": extra_styles,
        "style_weights": weights,
        "loop_weight": loop_weight,
        "loudness": loud_stats,
        "sample_rate": int(target_sr),
        "channels": int(y.shape[1]),
        "crossfade_seconds": mrt.config.crossfade_length,
        "total_samples": total_samples,
        "seconds_per_bar": seconds_per_bar,
        "loop_duration_seconds": loop_duration_seconds,
        "guidance_weight": guidance_weight,
        "temperature": temperature,
        "topk": topk,
    }
    return {"audio_base64": audio_b64, "metadata": metadata}

@app.get("/health")
def health():
    return {"ok": True}