narayangpt / main.py
thejagstudio's picture
Upload 13 files
ba5136e verified
raw
history blame
9.04 kB
from flask import Flask, request, jsonify, render_template, Response
import os
import requests
import json
from scipy import spatial
from flask_cors import CORS
import random
import numpy as np
from langchain_chroma import Chroma
from chromadb import Documents, EmbeddingFunction, Embeddings
app = Flask(__name__)
CORS(app)
class MyEmbeddingFunction(EmbeddingFunction):
def embed_documents(self, input: Documents) -> Embeddings:
for i in range(5):
try:
embeddings = []
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"
payload = json.dumps({
"inputs": input
})
headers = {
'Accept': 'application/json, text/plain, */*',
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Origin': 'https://deepinfra.com',
'Referer': 'https://deepinfra.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"'
}
response = requests.request("POST", url, headers=headers, data=payload)
return response.json()["embeddings"]
except:
pass
def embed_query(self, input: Documents) -> Embeddings:
print(input)
for i in range(5):
try:
embeddings = []
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"
payload = json.dumps({
"inputs": [input]
})
headers = {
'Accept': 'application/json, text/plain, */*',
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Origin': 'https://deepinfra.com',
'Referer': 'https://deepinfra.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"'
}
response = requests.request("POST", url, headers=headers, data=payload)
return response.json()["embeddings"][0]
except:
pass
CHROMA_PATH = "chroma"
custom_embeddings = MyEmbeddingFunction()
db = Chroma(
persist_directory=CHROMA_PATH, embedding_function=custom_embeddings
)
def embeddingGen(query):
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"
payload = json.dumps({
"inputs": [query]
})
headers = {
'Accept': 'application/json, text/plain, */*',
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Origin': 'https://deepinfra.com',
'Referer': 'https://deepinfra.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"'
}
response = requests.request("POST", url, headers=headers, data=payload)
return response.json()
def strings_ranked_by_relatedness(query, df, top_n=5):
def relatedness_fn(x, y):
x_norm = np.linalg.norm(x)
y_norm = np.linalg.norm(y)
return np.dot(x, y) / (x_norm * y_norm)
query_embedding_response = embeddingGen(query)
query_embedding = query_embedding_response["embeddings"][0]
strings_and_relatednesses = [
(row["text"], relatedness_fn(query_embedding, row["embedding"])) for row in df
]
strings_and_relatednesses.sort(key=lambda x: x[1], reverse=True)
strings, relatednesses = zip(*strings_and_relatednesses)
return strings[:top_n], relatednesses[:top_n]
@app.route("/api/gpt", methods=["POST"])
def gptRes():
data = request.get_json()
messages = data["messages"]
def inference():
url = "https://api.deepinfra.com/v1/openai/chat/completions"
payload = json.dumps({
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"messages": messages,
"stream": True,
"max_tokens": 1024,
})
headers = {
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Origin': 'https://deepinfra.com',
'Referer': 'https://deepinfra.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
'X-Deepinfra-Source': 'web-page',
'accept': 'text/event-stream',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"'
}
response = requests.request("POST", url, headers=headers, data=payload, stream=True)
for line in response.iter_lines(decode_unicode=True):
if line:
# try:
# line = line.split("data:")[1]
# line = json.loads(line)
# yield line["choices"][0]["delta"]["content"]
# except:
# yield ""
yield line
return Response(inference(), content_type='text/event-stream')
@app.route("/", methods=["GET"])
def index():
return render_template("index.html")
@app.route("/api/getAPI", methods=["POST"])
def getAPI():
return jsonify({"API": random.choice(apiKeys)})
@app.route("/api/getContext", methods=["POST"])
def getContext():
global db
question = request.form["question"]
results = db.similarity_search_with_score(question, k=5)
context = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
sources = [doc.metadata.get("id", None) for doc, _score in results]
return jsonify({"context": context, "sources": sources})
@app.route("/api/audioGenerate", methods=["POST"])
def audioGenerate():
answer = request.form["answer"]
audio = []
for i in answer.split("\n"):
url = "https://deepgram.com/api/ttsAudioGeneration"
payload = json.dumps({
"text": i,
"model": "aura-asteria-en",
"demoType": "landing-page",
"params": "tag=landingpage-product-texttospeech"
})
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
'content-type': 'application/json',
'origin': 'https://deepgram.com',
'priority': 'u=1, i',
'referer': 'https://deepgram.com/',
'sec-ch-ua': '"Not/A)Brand";v="8", "Chromium";v="126", "Google Chrome";v="126"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36'
}
response = requests.request("POST", url, headers=headers, data=payload)
audio.append(response.json()["data"])
return jsonify({"audio": audio})
if __name__ == "__main__":
# app.run(debug=True)
from waitress import serve
serve(app, host="0.0.0.0", port=7860)