Book-QA-Chat / app.py
tianzhechu's picture
Upload 3 files
82b5e45 verified
import os
import threading
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
MODEL_ID = os.getenv("MODEL_ID", "tianzhechu/BookQA-7B-Instruct")
TOKENIZER_ID = os.getenv("TOKENIZER_ID", "Qwen/Qwen2.5-0.5B-Instruct") # Optional: tokenizer repo to use locally
USE_LOCAL_TRANSFORMERS = bool(TOKENIZER_ID) or os.getenv("USE_LOCAL_TRANSFORMERS") == "1"
# Remote inference (default)
client = None if USE_LOCAL_TRANSFORMERS else InferenceClient(MODEL_ID)
# Lazy-loaded local model/tokenizer when TOKENIZER_ID is provided
local_model = None
local_tokenizer = None
def _ensure_local_model_loaded():
global local_model, local_tokenizer
if local_model is not None and local_tokenizer is not None:
return
from transformers import AutoModelForCausalLM, AutoTokenizer
if not TOKENIZER_ID:
raise RuntimeError(
"Local transformers backend requires TOKENIZER_ID to be set to a tokenizer repo."
)
local_tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_ID, use_fast=True)
local_model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
if not USE_LOCAL_TRANSFORMERS:
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
if token:
response += token
yield response
return
# Local generation using transformers with an alternate tokenizer
_ensure_local_model_loaded()
try:
from transformers import TextIteratorStreamer
except Exception as e:
raise RuntimeError(
"transformers TextIteratorStreamer is required for local streaming; ensure transformers is installed."
) from e
# Use chat template if available; otherwise fall back to a simple concatenation
try:
prompt_text = local_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
except Exception:
convo_parts = []
for m in messages:
role = m.get("role", "user")
content = m.get("content", "")
if role == "system":
convo_parts.append(f"<system>\n{content}\n</system>")
elif role == "assistant":
convo_parts.append(f"<assistant>\n{content}\n</assistant>")
else:
convo_parts.append(f"<user>\n{content}\n</user>")
prompt_text = "\n".join(convo_parts) + "\n<assistant>\n"
inputs = local_tokenizer(prompt_text, return_tensors="pt")
streamer = TextIteratorStreamer(
local_tokenizer, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
inputs=inputs.input_ids,
attention_mask=inputs.get("attention_mask"),
max_new_tokens=max_tokens,
do_sample=temperature > 0,
temperature=temperature,
top_p=top_p,
streamer=streamer,
)
thread = threading.Thread(target=local_model.generate, kwargs=generate_kwargs)
thread.start()
for new_text in streamer:
if new_text:
response += new_text
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()