Spaces:
Running
Running
import os | |
import threading | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
os.environ["HF_HOME"] = "/tmp/huggingface" | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" | |
MODEL_ID = os.getenv("MODEL_ID", "tianzhechu/BookQA-7B-Instruct") | |
TOKENIZER_ID = os.getenv("TOKENIZER_ID", "Qwen/Qwen2.5-0.5B-Instruct") # Optional: tokenizer repo to use locally | |
USE_LOCAL_TRANSFORMERS = bool(TOKENIZER_ID) or os.getenv("USE_LOCAL_TRANSFORMERS") == "1" | |
# Remote inference (default) | |
client = None if USE_LOCAL_TRANSFORMERS else InferenceClient(MODEL_ID) | |
# Lazy-loaded local model/tokenizer when TOKENIZER_ID is provided | |
local_model = None | |
local_tokenizer = None | |
def _ensure_local_model_loaded(): | |
global local_model, local_tokenizer | |
if local_model is not None and local_tokenizer is not None: | |
return | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
if not TOKENIZER_ID: | |
raise RuntimeError( | |
"Local transformers backend requires TOKENIZER_ID to be set to a tokenizer repo." | |
) | |
local_tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_ID, use_fast=True) | |
local_model = AutoModelForCausalLM.from_pretrained(MODEL_ID) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
if not USE_LOCAL_TRANSFORMERS: | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
if token: | |
response += token | |
yield response | |
return | |
# Local generation using transformers with an alternate tokenizer | |
_ensure_local_model_loaded() | |
try: | |
from transformers import TextIteratorStreamer | |
except Exception as e: | |
raise RuntimeError( | |
"transformers TextIteratorStreamer is required for local streaming; ensure transformers is installed." | |
) from e | |
# Use chat template if available; otherwise fall back to a simple concatenation | |
try: | |
prompt_text = local_tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True, | |
) | |
except Exception: | |
convo_parts = [] | |
for m in messages: | |
role = m.get("role", "user") | |
content = m.get("content", "") | |
if role == "system": | |
convo_parts.append(f"<system>\n{content}\n</system>") | |
elif role == "assistant": | |
convo_parts.append(f"<assistant>\n{content}\n</assistant>") | |
else: | |
convo_parts.append(f"<user>\n{content}\n</user>") | |
prompt_text = "\n".join(convo_parts) + "\n<assistant>\n" | |
inputs = local_tokenizer(prompt_text, return_tensors="pt") | |
streamer = TextIteratorStreamer( | |
local_tokenizer, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
inputs=inputs.input_ids, | |
attention_mask=inputs.get("attention_mask"), | |
max_new_tokens=max_tokens, | |
do_sample=temperature > 0, | |
temperature=temperature, | |
top_p=top_p, | |
streamer=streamer, | |
) | |
thread = threading.Thread(target=local_model.generate, kwargs=generate_kwargs) | |
thread.start() | |
for new_text in streamer: | |
if new_text: | |
response += new_text | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |