File size: 6,094 Bytes
0d49845
 
 
 
 
5dd7df8
 
eb12068
 
5dd7df8
 
eb12068
 
 
 
 
5dd7df8
 
 
eb12068
5dd7df8
 
 
c1a06e1
 
 
42528b7
 
 
 
 
 
0d49845
eb12068
f8f27d8
 
 
 
0d49845
eb12068
 
 
 
 
 
 
c1a06e1
 
 
eb12068
 
c1a06e1
 
 
 
 
 
 
 
0d49845
 
 
 
 
 
 
 
f8f27d8
 
0d49845
5dd7df8
0d49845
5dd7df8
0d49845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f27d8
 
0d49845
 
f8f27d8
 
0d49845
 
 
f8f27d8
 
0d49845
 
f8f27d8
 
0d49845
 
 
 
 
 
 
 
f8f27d8
42528b7
 
 
 
f8f27d8
 
0d49845
 
c1a06e1
f8f27d8
0d49845
f8f27d8
c1a06e1
 
0d49845
c1a06e1
 
0d49845
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
import pandas as pd

st.set_page_config(layout="wide")

with st.sidebar.expander("📍 Explanation", expanded=False):
    st.markdown("""
    **About**

    This demo allows you to explore the data inside the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) dataset. 
    It illustrates how **Word Position Deviation (WPD)** and **Lexical Deviation (LD)** can be used to find different types of [paraphrase pairs](https://direct.mit.edu/coli/article/39/3/463/1434/What-Is-a-Paraphrase) inside MRPC.
    By using what we observe from the data, we can find and correct numerous labelling errors inside MRPC, thus we present a revision of MRPC termed as **MRPC-R1**.

    **Data Display**

    The paraphrase pairs are displayed as **S1** and **S2** from the original MRPC (columns 1,2) and MRPC-R1 (columns 3,4), along with their labels (columns 5), showing if the label was changed or kept. **1->0** means that the pair was labelled as a paraphrase in MRPC, but corrected to non-paraphrase in MRPC-R1, meaning we rejected the paraphrase.

    By changing the **Display Types** option below, you can filter the displayed pairs to show pairs that were rejected (label changed from paraphrase to non-paraphrase) or corrected (inconsistencies corrected).

    This demo accompanies the paper ["Towards Better Characterization of Paraphrases" (ACL 2022)](https://openreview.net/forum?id=t2UJIFZVyz4), which describes in detail the methodologies used.""")

with st.sidebar.expander("⚙️ Dataset Options", expanded=False):
    st.markdown("This allows you to switch between the MRPC train and test sets, as well as choose to display only the original paraphrase pairs (MRPC) and/or the corrected pairs (MRPC-R1).")
    split = st.radio("Dataset Split", ["train", "test"])
    display = st.radio("Display only pairs from", [
                           "All", "Only MRPC", "Only MRPC-R1"])

ptype = st.sidebar.radio("Display Types", ["All",
                                           "Only Paraphrases (MRPC-R1)",
                                           "Only Paraphrases (MRPC)",
                                           "Rejected Paraphrases from MRPC",
                                           "Corrected Paraphrases from MRPC"])

st.sidebar.markdown("**WPD/LD Score Filter Options**")
display_range_wpd = st.sidebar.slider(
    "Filter by WPD Scores", min_value=0.0, max_value=1.0, value=(0.1, 0.7))
display_range_ld = st.sidebar.slider(
    "Filter by LD Scores", min_value=0.0, max_value=1.0, value=(0.1, 0.4))

with st.sidebar.expander("📍 WPD/LD Score Explanation", expanded=False):
    st.markdown("""
    WPD and LD measure differences in the two sentences of a paraphrase pair:

    * WPD measures difference in the sentence structure
    * LD measures differences in the words used

    By setting WPD to a high range (>0.4) and LD to a low range (<0.1), we can find paraphrases that do not change much in words used but have very different structures.

    When LD is set to a high range (>0.5), we can find many pairs labelled as paraphrases in MRPC are not in fact paraphrases.
    """)

    st.markdown("**Additional Options**")

    filter_by = st.radio(
        "Filter By Scores From", ["MRPC", "MRPC-R1"])

    display_scores = st.checkbox("Display scores", value=False)


def load_df(split):
    if split == "train":
        df = pd.read_csv("./mrpc_train_scores.csv")
    else:
        df = pd.read_csv("./mrpc_test_scores.csv")
    df.reset_index(drop=True, inplace=True)
    return df


def filter_df(df, display, ptype, filter_by, display_scores):
    # filter data
    if display == "Only MRPC":
        df = df.drop(["new_s1", "new_s2"], axis=1)
    elif display == "Only MRPC-R1":
        df = df.drop(["og_s1", "og_s2"], axis=1)
    # filter paraphrase type
    if ptype == "Only Paraphrases (MRPC)":
        condition = df.og_label == 1
        df_sel = df[condition]
    elif ptype == "Only Paraphrases (MRPC-R1)":
        condition = df.new_label == 1
        df_sel = df[condition]
    elif ptype == "Rejected Paraphrases from MRPC":
        condition = (df.new_label == 0) & (df.og_label == 1)
        df_sel = df[condition]
    elif ptype == "Corrected Paraphrases from MRPC":
        condition = df.remarks == "corrected"
        df_sel = df[condition]
    else:
        # all
        df_sel = df
    # sort by scores
    if filter_by == "MRPC":
        # wpd
        condition = (df_sel.og_wpd >= display_range_wpd[0]) & (
            df_sel.og_wpd < display_range_wpd[1])
        df_sel = df_sel[condition]
        # ld
        condition = (df_sel.og_ld >= display_range_ld[0]) & (
            df_sel.og_ld < display_range_ld[1])
        df_sel = df_sel[condition]
    else:
        # wpd
        condition = (df_sel.new_wpd >= display_range_wpd[0]) & (
            df_sel.new_wpd < display_range_wpd[1])
        df_sel = df_sel[condition]
        # ld
        condition = (df_sel.new_ld >= display_range_ld[0]) & (
            df_sel.new_ld < display_range_ld[1])
        df_sel = df_sel[condition]
    # filter scores
    if filter_by == "MRPC":
        df_sel.sort_values("og_ld", inplace=True)
        df_sel.sort_values("og_wpd", inplace=True)
    else:
        df_sel.sort_values("new_ld", inplace=True)
        df_sel.sort_values("new_wpd", inplace=True)
    if not display_scores:
        df_sel.drop(["og_ld", "og_wpd", "new_ld", "new_wpd"],
                    axis=1, inplace=True)
    label_col = df_sel["og_label"].astype(
        str)+"->"+df_sel["new_label"].astype(str)
    df_sel["og/new label"] = label_col
    df_sel.drop(["remarks", "og_label", "new_label"], axis=1, inplace=True)
    return df_sel


df = load_df(split)

df_sel = filter_df(df, display, ptype, filter_by, display_scores)
df_sel.rename(columns={"og_s1": "Original S1 (MRPC)", "og_s2": "Original S2 (MRPC)",
              "new_s1": "New S1 (MRPC-R1)", "new_s2": "New S2 (MRPC-R1)"}, inplace=True)

st.markdown("**MRPC Paraphrase Data Explorer** (Displaying " +
            str(len(df_sel))+" items)")

st.table(data=df_sel)