File size: 8,569 Bytes
26932f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import shutil
import streamlit as st
import os
import sys
import pandas as pd
import json
from PIL import Image
import logging


sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from models.segmentation_model import SegmentationModel
from models.identification_model import IdentificationModel
from models.text_extraction_model import TextExtractionModel
from models.summarization_model import SummarizationModel
from utils.postprocessing import save_segmented_objects
from utils.data_mapping import map_data, save_mapped_data
from utils.visualization import visualize_detections, visualize_segmentation, create_summary_table

# Set up logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')

@st.cache_resource
def load_segmentation_model():
    return SegmentationModel()

@st.cache_resource
def load_identification_model():
    return IdentificationModel()

@st.cache_resource
def load_text_extraction_model():
    return TextExtractionModel()

@st.cache_resource
def load_summarization_model():
    return SummarizationModel()

def main():
    st.set_page_config(layout="wide")
    st.markdown("""
    <style>
    .stImage > div {
        margin-left: auto;
        margin-right: auto;
    }
    .stTable > div {
        margin-left: auto;
        margin-right: auto;
    }
    h1{ /* Title style */
            text-align: center;
        }
    </style>
    """, unsafe_allow_html=True)

    def clear_segmented_objects_folder(folder_path):
        # Remove all files in the segmented_objects folder
        if os.path.exists(folder_path) and os.path.isdir(folder_path):
            for filename in os.listdir(folder_path):
                file_path = os.path.join(folder_path, filename)
                try:
                    if os.path.isfile(file_path) or os.path.islink(file_path):
                        os.unlink(file_path)  # Remove the file
                    elif os.path.isdir(file_path):
                        shutil.rmtree(file_path)  # Remove the directory
                except Exception as e:
                    st.error(f'Failed to delete {file_path}. Reason: {e}')
        else:
            print(f"Folder '{folder_path}' does not exist, skipping the clearing step.")
        
    clear_segmented_objects_folder("data/segmented_objects")
    
    st.title("Image Processing Pipeline 🤖")

    # File upload
    uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
    logging.debug(f"Uploaded file: {uploaded_file}")

    if uploaded_file is not None:
        # Save uploaded file
        input_path = os.path.join("data", "input_images", uploaded_file.name)
        with open(input_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        logging.debug(f"File saved to: {input_path}")

        image = Image.open(input_path)

        # Segmentation
        segmentation_model = load_segmentation_model()
        masks, boxes, labels, class_name = segmentation_model.segment_image(input_path)
        logging.debug(f"Segmentation results: {len(masks)} masks, {len(boxes)} boxes, {len(labels)} labels")
        
        # Save segmented objects
        objects = save_segmented_objects(image, masks, boxes, "data/segmented_objects")
        logging.debug(f"Saved {len(objects)} segmented objects")

        # Object identification
        identification_model = load_identification_model()
        detections = []
        for file in sorted(os.listdir("data/segmented_objects")):
            f = os.path.join("data/segmented_objects", file)
            obj_detections = identification_model.identify_objects(f, class_name)
            if obj_detections:  # Only append if the object was identified
                class_name.remove(obj_detections[0]['description'])
                detections.extend(obj_detections)
        logging.debug(f"Detections: {len(detections)} objects identified")

        # Match detections to segmented objects
        object_descriptions = []
        for obj, det in zip(objects, detections):
            if det:
                object_descriptions.append(f"This is a {det['description']} with confidence {det['probability']:.2f}")
            else:
                object_descriptions.append("Unidentified object")
        logging.debug(f"Object description: {detections}")

        output_dir = "data/output"
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        # Save detections
        with open("data/output/detections.json", "w") as f:
            json.dump(detections, f)
        logging.debug("Detections saved to data/output/detections.json")

        # Text extraction
        text_extraction_model = load_text_extraction_model()
        extracted_texts = [text_extraction_model.extract_text(obj[1]) for obj in objects]
        logging.debug(f"Extracted texts: {extracted_texts}")

        # Summarization
        summarization_model = load_summarization_model()
        summaries = [summarization_model.summarize(f"{desc} {text}") for desc, text in zip(object_descriptions, extracted_texts)]
        logging.debug(f"Summaries: {summaries}")

        # Data mapping
        mapped_data = map_data(objects, detections, object_descriptions, extracted_texts, summaries)
        save_mapped_data(mapped_data, "data/output/mapped_data.json")

        # Visualization
        visualize_segmentation(image, masks, "data/output/segmented_image.png")
        visualize_detections(input_path, "data/output/detected_objects.png")
        create_summary_table(mapped_data, "data/output/summary_table.csv")
    
        # Load the images and table

        # Initialize session state if not already done
        if 'show_original_image' not in st.session_state:
            st.session_state.show_original_image = False
        if 'show_segmented_image' not in st.session_state:
            st.session_state.show_segmented_image = False
        if 'show_detected_objects' not in st.session_state:
            st.session_state.show_detected_objects = False
        if 'show_summary_table' not in st.session_state:
            st.session_state.show_summary_table = False

        button_col1, button_col2, button_col3, button_col4 = st.columns(4)

        with button_col1:
            if st.button("Show Original Image"):
                st.session_state.show_original_image = not st.session_state.show_original_image

        with button_col2:
            if st.button("Show Segmented Image"):
                st.session_state.show_segmented_image = not st.session_state.show_segmented_image

        with button_col3:
            if st.button("Show Detected Objects"):
                st.session_state.show_detected_objects = not st.session_state.show_detected_objects

        with button_col4:
            if st.button("Show Summary Table"):
                st.session_state.show_summary_table = not st.session_state.show_summary_table

        # Display components based on session state
        def resize_image(image_path, target_width, target_height):
            image = Image.open(image_path)
            resized_image = image.resize((target_width, target_height))
            return resized_image

        # Set desired width and height
        IMAGE_WIDTH = 600
        IMAGE_HEIGHT = 400
        
        if st.session_state.show_original_image:
            col1, col2, col3 = st.columns([0.3, 0.4, 0.3])
            with col2:
                resized_image = resize_image(input_path, IMAGE_WIDTH, IMAGE_HEIGHT)
                st.image(resized_image, caption="Original Image", use_column_width=True)

        if st.session_state.show_segmented_image:
            col1, col2, col3 = st.columns([0.3, 0.4, 0.3])
            with col2:
                resized_image = resize_image("data/output/segmented_image.png", IMAGE_WIDTH, IMAGE_HEIGHT)
                st.image(resized_image, caption="Segmented Image", use_column_width=True)

        if st.session_state.show_detected_objects:
            col1, col2, col3 = st.columns([0.3, 0.4, 0.3])
            with col2:
                resized_image = resize_image("data/output/detected_objects.png", IMAGE_WIDTH, IMAGE_HEIGHT)
                st.image(resized_image, caption="Detected Objects", use_column_width=True)

        if st.session_state.show_summary_table:
            col1, col2, col3 = st.columns([1, 3, 1])
            with col2:
                summary_table = pd.read_csv("data/output/summary_table.csv")
                st.table(summary_table)

if __name__ == "__main__":
    main()