Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| from pytorch_lightning.callbacks import Callback | |
| from pytorch_lightning.loggers import WandbLogger | |
| import numpy as np | |
| from pytorch_lightning.utilities import rank_zero_only | |
| from typing import Union | |
| import pytorch_lightning as pl | |
| import os | |
| from sgm.util import exists, suppress_output, default | |
| import torchvision | |
| from PIL import Image | |
| import torch | |
| import wandb | |
| import moviepy.editor as mpy | |
| from einops import rearrange | |
| import torchaudio | |
| # import tempfile | |
| # import cv2 | |
| # import scipy.io.wavfile as wav | |
| # import ffmpeg | |
| def save_audio_video( | |
| video, audio=None, frame_rate=25, sample_rate=16000, save_path="temp.mp4", keep_intermediate=False | |
| ): | |
| """Save audio and video to a single file. | |
| video: (t, c, h, w) | |
| audio: (channels t) | |
| """ | |
| # temp_filename = next(tempfile._get_candidate_names()) | |
| # if save_path: | |
| # save_path = save_path | |
| # else: | |
| # save_path = "/tmp/" + next(tempfile._get_candidate_names()) + ".mp4" | |
| save_path = str(save_path) | |
| try: | |
| torchvision.io.write_video( | |
| "temp_video.mp4", rearrange(video.detach().cpu(), "t c h w -> t h w c").to(torch.uint8), frame_rate | |
| ) | |
| video_clip = mpy.VideoFileClip("temp_video.mp4") | |
| if audio is not None: | |
| torchaudio.save("temp_audio.wav", audio.detach().cpu(), sample_rate) | |
| audio_clip = mpy.AudioFileClip("temp_audio.wav") | |
| video_clip = video_clip.set_audio(audio_clip) | |
| video_clip.write_videofile(save_path, fps=frame_rate, codec="libx264", audio_codec="aac", verbose=False) | |
| if not keep_intermediate: | |
| os.remove("temp_video.mp4") | |
| if audio is not None: | |
| os.remove("temp_audio.wav") | |
| return 1 | |
| except Exception as e: | |
| print(e) | |
| print("Saving video to file failed") | |
| return 0 | |
| # def write_video_opencv(video, video_rate, video_path): | |
| # fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| # out = cv2.VideoWriter(video_path, fourcc, video_rate, (video.shape[2], video.shape[3]), 0) | |
| # for frame in list(video): | |
| # frame = np.squeeze(frame) | |
| # out.write(np.squeeze(frame)) | |
| # out.release() | |
| # # Code mostly inherited from bulletin | |
| # def save_av_sample(video, video_rate, audio=None, audio_rate=16_000, path=None): | |
| # # Save video sample in train dir for debugging | |
| # # video_save = 0.5 * video.detach().cpu().numpy() + 0.5 | |
| # video_save = rearrange(video, "t c h w -> t h w c").detach().cpu().numpy() | |
| # temp_filename = next(tempfile._get_candidate_names()) | |
| # if path: | |
| # video_path = path | |
| # else: | |
| # video_path = "/tmp/" + next(tempfile._get_candidate_names()) + ".mp4" | |
| # write_video_opencv((video_save).astype(np.uint8), video_rate, "/tmp/" + temp_filename + ".mp4") | |
| # audio_save = audio.detach().squeeze().cpu().numpy() | |
| # wav.write("/tmp/" + temp_filename + ".wav", audio_rate, audio_save) | |
| # try: | |
| # in1 = ffmpeg.input("/tmp/" + temp_filename + ".mp4") | |
| # in2 = ffmpeg.input("/tmp/" + temp_filename + ".wav") | |
| # out = ffmpeg.output(in1["v"], in2["a"], video_path, loglevel="panic").overwrite_output() | |
| # out.run(capture_stdout=True, capture_stderr=True) | |
| # except ffmpeg.Error as e: | |
| # print("stdout:", e.stdout.decode("utf8")) | |
| # print("stderr:", e.stderr.decode("utf8")) | |
| # raise e | |
| # return video_path | |
| class VideoLogger(Callback): | |
| def __init__( | |
| self, | |
| batch_frequency, | |
| max_videos, | |
| clamp=True, | |
| increase_log_steps=True, | |
| rescale=True, | |
| disabled=False, | |
| log_on_batch_idx=False, | |
| log_first_step=False, | |
| log_videos_kwargs=None, | |
| log_before_first_step=False, | |
| enable_autocast=True, | |
| batch_frequency_val=None, | |
| ): | |
| super().__init__() | |
| self.enable_autocast = enable_autocast | |
| self.rescale = rescale | |
| self.batch_freq = batch_frequency | |
| self.max_videos = max_videos | |
| self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)] | |
| if not increase_log_steps: | |
| self.log_steps = [self.batch_freq] | |
| self.batch_freq_val = default(batch_frequency_val, self.batch_freq) | |
| self.log_steps_val = [2**n for n in range(int(np.log2(self.batch_freq_val)) + 1)] | |
| if not increase_log_steps: | |
| self.log_steps_val = [self.batch_freq_val] | |
| self.clamp = clamp | |
| self.disabled = disabled | |
| self.log_on_batch_idx = log_on_batch_idx | |
| self.log_videos_kwargs = log_videos_kwargs if log_videos_kwargs else {} | |
| self.log_first_step = log_first_step | |
| self.log_before_first_step = log_before_first_step | |
| def log_local( | |
| self, | |
| save_dir, | |
| split, | |
| log_elements, | |
| raw_audio, | |
| global_step, | |
| current_epoch, | |
| batch_idx, | |
| pl_module: Union[None, pl.LightningModule] = None, | |
| ): | |
| root = os.path.join(save_dir, "videos", split) | |
| for k in log_elements: | |
| element = log_elements[k] | |
| if len(element.shape) == 4: | |
| grid = torchvision.utils.make_grid(element, nrow=4) | |
| if self.rescale: | |
| grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
| grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
| grid = grid.numpy() | |
| grid = (grid * 255).astype(np.uint8) | |
| filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) | |
| path = os.path.join(root, filename) | |
| os.makedirs(os.path.split(path)[0], exist_ok=True) | |
| img = Image.fromarray(grid) | |
| img.save(path) | |
| if exists(pl_module): | |
| assert isinstance( | |
| pl_module.logger, WandbLogger | |
| ), "logger_log_image only supports WandbLogger currently" | |
| pl_module.logger.log_image( | |
| key=f"{split}/{k}", | |
| images=[ | |
| img, | |
| ], | |
| step=pl_module.global_step, | |
| ) | |
| elif len(element.shape) == 5: | |
| video = element | |
| if self.rescale: | |
| video = (video + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
| video = video * 255.0 | |
| video = video.permute(0, 2, 1, 3, 4).cpu().detach().to(torch.uint8) # b,t,c,h,w | |
| for i in range(video.shape[0]): | |
| filename = "{}_gs-{:06}_e-{:06}_b-{:06}_{}.mp4".format(k, global_step, current_epoch, batch_idx, i) | |
| path = os.path.join(root, filename) | |
| os.makedirs(os.path.split(path)[0], exist_ok=True) | |
| log_audio = raw_audio[i] if raw_audio is not None else None | |
| success = save_audio_video( | |
| video[i], | |
| audio=log_audio.unsqueeze(0) if log_audio is not None else None, | |
| frame_rate=25, | |
| sample_rate=16000, | |
| save_path=path, | |
| keep_intermediate=False, | |
| ) | |
| # video_path = save_av_sample(video[i], 25, audio=raw_audio, audio_rate=16000, path=None) | |
| if exists(pl_module): | |
| assert isinstance( | |
| pl_module.logger, WandbLogger | |
| ), "logger_log_image only supports WandbLogger currently" | |
| pl_module.logger.experiment.log( | |
| { | |
| f"{split}/{k}": wandb.Video( | |
| path if success else video, | |
| # caption=f"diffused videos w {n_frames} frames (condition left, generated right)", | |
| fps=25, | |
| format="mp4", | |
| ) | |
| }, | |
| ) | |
| def log_video(self, pl_module, batch, batch_idx, split="train"): | |
| check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step | |
| # print(f"check_idx: {check_idx}", f"split: {split}") | |
| if ( | |
| self.check_frequency(check_idx, split=split) | |
| and hasattr(pl_module, "log_videos") # batch_idx % self.batch_freq == 0 | |
| and callable(pl_module.log_videos) | |
| and | |
| # batch_idx > 5 and | |
| self.max_videos > 0 | |
| ): | |
| logger = type(pl_module.logger) | |
| is_train = pl_module.training | |
| if is_train: | |
| pl_module.eval() | |
| gpu_autocast_kwargs = { | |
| "enabled": self.enable_autocast, # torch.is_autocast_enabled(), | |
| "dtype": torch.get_autocast_gpu_dtype(), | |
| "cache_enabled": torch.is_autocast_cache_enabled(), | |
| } | |
| with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs): | |
| videos = pl_module.log_videos(batch, split=split, **self.log_videos_kwargs) | |
| for k in videos: | |
| N = min(videos[k].shape[0], self.max_videos) | |
| videos[k] = videos[k][:N] | |
| if isinstance(videos[k], torch.Tensor): | |
| videos[k] = videos[k].detach().float().cpu() | |
| if self.clamp: | |
| videos[k] = torch.clamp(videos[k], -1.0, 1.0) | |
| raw_audio = batch.get("raw_audio", None) | |
| self.log_local( | |
| pl_module.logger.save_dir, | |
| split, | |
| videos, | |
| raw_audio, | |
| pl_module.global_step, | |
| pl_module.current_epoch, | |
| batch_idx, | |
| pl_module=pl_module if isinstance(pl_module.logger, WandbLogger) else None, | |
| ) | |
| if is_train: | |
| pl_module.train() | |
| def check_frequency(self, check_idx, split="train"): | |
| if split == "val": | |
| if check_idx: | |
| check_idx -= 1 | |
| if ((check_idx % self.batch_freq_val) == 0 or (check_idx in self.log_steps_val)) and ( | |
| check_idx > 0 or self.log_first_step | |
| ): | |
| try: | |
| self.log_steps_val.pop(0) | |
| except IndexError as e: | |
| print(e) | |
| pass | |
| return True | |
| return False | |
| if check_idx: | |
| check_idx -= 1 | |
| if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and ( | |
| check_idx > 0 or self.log_first_step | |
| ): | |
| try: | |
| self.log_steps.pop(0) | |
| except IndexError as e: | |
| print(e) | |
| pass | |
| return True | |
| return False | |
| def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx): | |
| if not self.disabled and (pl_module.global_step > 0 or self.log_first_step): | |
| self.log_video(pl_module, batch, batch_idx, split="train") | |
| def on_train_batch_start(self, trainer, pl_module, batch, batch_idx): | |
| if self.log_before_first_step and pl_module.global_step == 0: | |
| print(f"{self.__class__.__name__}: logging before training") | |
| self.log_video(pl_module, batch, batch_idx, split="train") | |
| def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs): | |
| if not self.disabled and (pl_module.global_step > 0 or self.log_first_step): | |
| self.log_video(pl_module, batch, batch_idx, split="val") | |
| if hasattr(pl_module, "calibrate_grad_norm"): | |
| if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0: | |
| self.log_gradients(trainer, pl_module, batch_idx=batch_idx) | |