Spaces:
Running
on
Zero
Running
on
Zero
from pytorch_lightning.callbacks import Callback | |
from pytorch_lightning.loggers import WandbLogger | |
import numpy as np | |
from pytorch_lightning.utilities import rank_zero_only | |
from typing import Union | |
import pytorch_lightning as pl | |
import os | |
from sgm.util import exists, suppress_output, default | |
import torchvision | |
from PIL import Image | |
import torch | |
import wandb | |
import moviepy.editor as mpy | |
from einops import rearrange | |
import torchaudio | |
# import tempfile | |
# import cv2 | |
# import scipy.io.wavfile as wav | |
# import ffmpeg | |
def save_audio_video( | |
video, audio=None, frame_rate=25, sample_rate=16000, save_path="temp.mp4", keep_intermediate=False | |
): | |
"""Save audio and video to a single file. | |
video: (t, c, h, w) | |
audio: (channels t) | |
""" | |
# temp_filename = next(tempfile._get_candidate_names()) | |
# if save_path: | |
# save_path = save_path | |
# else: | |
# save_path = "/tmp/" + next(tempfile._get_candidate_names()) + ".mp4" | |
save_path = str(save_path) | |
try: | |
torchvision.io.write_video( | |
"temp_video.mp4", rearrange(video.detach().cpu(), "t c h w -> t h w c").to(torch.uint8), frame_rate | |
) | |
video_clip = mpy.VideoFileClip("temp_video.mp4") | |
if audio is not None: | |
torchaudio.save("temp_audio.wav", audio.detach().cpu(), sample_rate) | |
audio_clip = mpy.AudioFileClip("temp_audio.wav") | |
video_clip = video_clip.set_audio(audio_clip) | |
video_clip.write_videofile(save_path, fps=frame_rate, codec="libx264", audio_codec="aac", verbose=False) | |
if not keep_intermediate: | |
os.remove("temp_video.mp4") | |
if audio is not None: | |
os.remove("temp_audio.wav") | |
return 1 | |
except Exception as e: | |
print(e) | |
print("Saving video to file failed") | |
return 0 | |
# def write_video_opencv(video, video_rate, video_path): | |
# fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
# out = cv2.VideoWriter(video_path, fourcc, video_rate, (video.shape[2], video.shape[3]), 0) | |
# for frame in list(video): | |
# frame = np.squeeze(frame) | |
# out.write(np.squeeze(frame)) | |
# out.release() | |
# # Code mostly inherited from bulletin | |
# def save_av_sample(video, video_rate, audio=None, audio_rate=16_000, path=None): | |
# # Save video sample in train dir for debugging | |
# # video_save = 0.5 * video.detach().cpu().numpy() + 0.5 | |
# video_save = rearrange(video, "t c h w -> t h w c").detach().cpu().numpy() | |
# temp_filename = next(tempfile._get_candidate_names()) | |
# if path: | |
# video_path = path | |
# else: | |
# video_path = "/tmp/" + next(tempfile._get_candidate_names()) + ".mp4" | |
# write_video_opencv((video_save).astype(np.uint8), video_rate, "/tmp/" + temp_filename + ".mp4") | |
# audio_save = audio.detach().squeeze().cpu().numpy() | |
# wav.write("/tmp/" + temp_filename + ".wav", audio_rate, audio_save) | |
# try: | |
# in1 = ffmpeg.input("/tmp/" + temp_filename + ".mp4") | |
# in2 = ffmpeg.input("/tmp/" + temp_filename + ".wav") | |
# out = ffmpeg.output(in1["v"], in2["a"], video_path, loglevel="panic").overwrite_output() | |
# out.run(capture_stdout=True, capture_stderr=True) | |
# except ffmpeg.Error as e: | |
# print("stdout:", e.stdout.decode("utf8")) | |
# print("stderr:", e.stderr.decode("utf8")) | |
# raise e | |
# return video_path | |
class VideoLogger(Callback): | |
def __init__( | |
self, | |
batch_frequency, | |
max_videos, | |
clamp=True, | |
increase_log_steps=True, | |
rescale=True, | |
disabled=False, | |
log_on_batch_idx=False, | |
log_first_step=False, | |
log_videos_kwargs=None, | |
log_before_first_step=False, | |
enable_autocast=True, | |
batch_frequency_val=None, | |
): | |
super().__init__() | |
self.enable_autocast = enable_autocast | |
self.rescale = rescale | |
self.batch_freq = batch_frequency | |
self.max_videos = max_videos | |
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)] | |
if not increase_log_steps: | |
self.log_steps = [self.batch_freq] | |
self.batch_freq_val = default(batch_frequency_val, self.batch_freq) | |
self.log_steps_val = [2**n for n in range(int(np.log2(self.batch_freq_val)) + 1)] | |
if not increase_log_steps: | |
self.log_steps_val = [self.batch_freq_val] | |
self.clamp = clamp | |
self.disabled = disabled | |
self.log_on_batch_idx = log_on_batch_idx | |
self.log_videos_kwargs = log_videos_kwargs if log_videos_kwargs else {} | |
self.log_first_step = log_first_step | |
self.log_before_first_step = log_before_first_step | |
def log_local( | |
self, | |
save_dir, | |
split, | |
log_elements, | |
raw_audio, | |
global_step, | |
current_epoch, | |
batch_idx, | |
pl_module: Union[None, pl.LightningModule] = None, | |
): | |
root = os.path.join(save_dir, "videos", split) | |
for k in log_elements: | |
element = log_elements[k] | |
if len(element.shape) == 4: | |
grid = torchvision.utils.make_grid(element, nrow=4) | |
if self.rescale: | |
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
grid = grid.numpy() | |
grid = (grid * 255).astype(np.uint8) | |
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) | |
path = os.path.join(root, filename) | |
os.makedirs(os.path.split(path)[0], exist_ok=True) | |
img = Image.fromarray(grid) | |
img.save(path) | |
if exists(pl_module): | |
assert isinstance( | |
pl_module.logger, WandbLogger | |
), "logger_log_image only supports WandbLogger currently" | |
pl_module.logger.log_image( | |
key=f"{split}/{k}", | |
images=[ | |
img, | |
], | |
step=pl_module.global_step, | |
) | |
elif len(element.shape) == 5: | |
video = element | |
if self.rescale: | |
video = (video + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
video = video * 255.0 | |
video = video.permute(0, 2, 1, 3, 4).cpu().detach().to(torch.uint8) # b,t,c,h,w | |
for i in range(video.shape[0]): | |
filename = "{}_gs-{:06}_e-{:06}_b-{:06}_{}.mp4".format(k, global_step, current_epoch, batch_idx, i) | |
path = os.path.join(root, filename) | |
os.makedirs(os.path.split(path)[0], exist_ok=True) | |
log_audio = raw_audio[i] if raw_audio is not None else None | |
success = save_audio_video( | |
video[i], | |
audio=log_audio.unsqueeze(0) if log_audio is not None else None, | |
frame_rate=25, | |
sample_rate=16000, | |
save_path=path, | |
keep_intermediate=False, | |
) | |
# video_path = save_av_sample(video[i], 25, audio=raw_audio, audio_rate=16000, path=None) | |
if exists(pl_module): | |
assert isinstance( | |
pl_module.logger, WandbLogger | |
), "logger_log_image only supports WandbLogger currently" | |
pl_module.logger.experiment.log( | |
{ | |
f"{split}/{k}": wandb.Video( | |
path if success else video, | |
# caption=f"diffused videos w {n_frames} frames (condition left, generated right)", | |
fps=25, | |
format="mp4", | |
) | |
}, | |
) | |
def log_video(self, pl_module, batch, batch_idx, split="train"): | |
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step | |
# print(f"check_idx: {check_idx}", f"split: {split}") | |
if ( | |
self.check_frequency(check_idx, split=split) | |
and hasattr(pl_module, "log_videos") # batch_idx % self.batch_freq == 0 | |
and callable(pl_module.log_videos) | |
and | |
# batch_idx > 5 and | |
self.max_videos > 0 | |
): | |
logger = type(pl_module.logger) | |
is_train = pl_module.training | |
if is_train: | |
pl_module.eval() | |
gpu_autocast_kwargs = { | |
"enabled": self.enable_autocast, # torch.is_autocast_enabled(), | |
"dtype": torch.get_autocast_gpu_dtype(), | |
"cache_enabled": torch.is_autocast_cache_enabled(), | |
} | |
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs): | |
videos = pl_module.log_videos(batch, split=split, **self.log_videos_kwargs) | |
for k in videos: | |
N = min(videos[k].shape[0], self.max_videos) | |
videos[k] = videos[k][:N] | |
if isinstance(videos[k], torch.Tensor): | |
videos[k] = videos[k].detach().float().cpu() | |
if self.clamp: | |
videos[k] = torch.clamp(videos[k], -1.0, 1.0) | |
raw_audio = batch.get("raw_audio", None) | |
self.log_local( | |
pl_module.logger.save_dir, | |
split, | |
videos, | |
raw_audio, | |
pl_module.global_step, | |
pl_module.current_epoch, | |
batch_idx, | |
pl_module=pl_module if isinstance(pl_module.logger, WandbLogger) else None, | |
) | |
if is_train: | |
pl_module.train() | |
def check_frequency(self, check_idx, split="train"): | |
if split == "val": | |
if check_idx: | |
check_idx -= 1 | |
if ((check_idx % self.batch_freq_val) == 0 or (check_idx in self.log_steps_val)) and ( | |
check_idx > 0 or self.log_first_step | |
): | |
try: | |
self.log_steps_val.pop(0) | |
except IndexError as e: | |
print(e) | |
pass | |
return True | |
return False | |
if check_idx: | |
check_idx -= 1 | |
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and ( | |
check_idx > 0 or self.log_first_step | |
): | |
try: | |
self.log_steps.pop(0) | |
except IndexError as e: | |
print(e) | |
pass | |
return True | |
return False | |
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx): | |
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step): | |
self.log_video(pl_module, batch, batch_idx, split="train") | |
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx): | |
if self.log_before_first_step and pl_module.global_step == 0: | |
print(f"{self.__class__.__name__}: logging before training") | |
self.log_video(pl_module, batch, batch_idx, split="train") | |
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs): | |
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step): | |
self.log_video(pl_module, batch, batch_idx, split="val") | |
if hasattr(pl_module, "calibrate_grad_norm"): | |
if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0: | |
self.log_gradients(trainer, pl_module, batch_idx=batch_idx) | |