Spaces:
Running
on
Zero
Running
on
Zero
"""Augmentation pipeline used in the paper | |
"Elucidating the Design Space of Diffusion-Based Generative Models". | |
Built around the same concepts that were originally proposed in the paper | |
"Training Generative Adversarial Networks with Limited Data".""" | |
import numpy as np | |
import torch | |
from einops import rearrange, repeat | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if callable(d) else d | |
_constant_cache = dict() | |
def constant(value, shape=None, dtype=None, device=None, memory_format=None): | |
value = np.asarray(value) | |
if shape is not None: | |
shape = tuple(shape) | |
if dtype is None: | |
dtype = torch.get_default_dtype() | |
if device is None: | |
device = torch.device("cpu") | |
if memory_format is None: | |
memory_format = torch.contiguous_format | |
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format) | |
tensor = _constant_cache.get(key, None) | |
if tensor is None: | |
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device) | |
if shape is not None: | |
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape)) | |
tensor = tensor.contiguous(memory_format=memory_format) | |
_constant_cache[key] = tensor | |
return tensor | |
# ---------------------------------------------------------------------------- | |
# Coefficients of various wavelet decomposition low-pass filters. | |
wavelets = { | |
"haar": [0.7071067811865476, 0.7071067811865476], | |
"db1": [0.7071067811865476, 0.7071067811865476], | |
"db2": [-0.12940952255092145, 0.22414386804185735, 0.836516303737469, 0.48296291314469025], | |
"db3": [ | |
0.035226291882100656, | |
-0.08544127388224149, | |
-0.13501102001039084, | |
0.4598775021193313, | |
0.8068915093133388, | |
0.3326705529509569, | |
], | |
"db4": [ | |
-0.010597401784997278, | |
0.032883011666982945, | |
0.030841381835986965, | |
-0.18703481171888114, | |
-0.02798376941698385, | |
0.6308807679295904, | |
0.7148465705525415, | |
0.23037781330885523, | |
], | |
"db5": [ | |
0.003335725285001549, | |
-0.012580751999015526, | |
-0.006241490213011705, | |
0.07757149384006515, | |
-0.03224486958502952, | |
-0.24229488706619015, | |
0.13842814590110342, | |
0.7243085284385744, | |
0.6038292697974729, | |
0.160102397974125, | |
], | |
"db6": [ | |
-0.00107730108499558, | |
0.004777257511010651, | |
0.0005538422009938016, | |
-0.031582039318031156, | |
0.02752286553001629, | |
0.09750160558707936, | |
-0.12976686756709563, | |
-0.22626469396516913, | |
0.3152503517092432, | |
0.7511339080215775, | |
0.4946238903983854, | |
0.11154074335008017, | |
], | |
"db7": [ | |
0.0003537138000010399, | |
-0.0018016407039998328, | |
0.00042957797300470274, | |
0.012550998556013784, | |
-0.01657454163101562, | |
-0.03802993693503463, | |
0.0806126091510659, | |
0.07130921926705004, | |
-0.22403618499416572, | |
-0.14390600392910627, | |
0.4697822874053586, | |
0.7291320908465551, | |
0.39653931948230575, | |
0.07785205408506236, | |
], | |
"db8": [ | |
-0.00011747678400228192, | |
0.0006754494059985568, | |
-0.0003917403729959771, | |
-0.00487035299301066, | |
0.008746094047015655, | |
0.013981027917015516, | |
-0.04408825393106472, | |
-0.01736930100202211, | |
0.128747426620186, | |
0.00047248457399797254, | |
-0.2840155429624281, | |
-0.015829105256023893, | |
0.5853546836548691, | |
0.6756307362980128, | |
0.3128715909144659, | |
0.05441584224308161, | |
], | |
"sym2": [-0.12940952255092145, 0.22414386804185735, 0.836516303737469, 0.48296291314469025], | |
"sym3": [ | |
0.035226291882100656, | |
-0.08544127388224149, | |
-0.13501102001039084, | |
0.4598775021193313, | |
0.8068915093133388, | |
0.3326705529509569, | |
], | |
"sym4": [ | |
-0.07576571478927333, | |
-0.02963552764599851, | |
0.49761866763201545, | |
0.8037387518059161, | |
0.29785779560527736, | |
-0.09921954357684722, | |
-0.012603967262037833, | |
0.0322231006040427, | |
], | |
"sym5": [ | |
0.027333068345077982, | |
0.029519490925774643, | |
-0.039134249302383094, | |
0.1993975339773936, | |
0.7234076904024206, | |
0.6339789634582119, | |
0.01660210576452232, | |
-0.17532808990845047, | |
-0.021101834024758855, | |
0.019538882735286728, | |
], | |
"sym6": [ | |
0.015404109327027373, | |
0.0034907120842174702, | |
-0.11799011114819057, | |
-0.048311742585633, | |
0.4910559419267466, | |
0.787641141030194, | |
0.3379294217276218, | |
-0.07263752278646252, | |
-0.021060292512300564, | |
0.04472490177066578, | |
0.0017677118642428036, | |
-0.007800708325034148, | |
], | |
"sym7": [ | |
0.002681814568257878, | |
-0.0010473848886829163, | |
-0.01263630340325193, | |
0.03051551316596357, | |
0.0678926935013727, | |
-0.049552834937127255, | |
0.017441255086855827, | |
0.5361019170917628, | |
0.767764317003164, | |
0.2886296317515146, | |
-0.14004724044296152, | |
-0.10780823770381774, | |
0.004010244871533663, | |
0.010268176708511255, | |
], | |
"sym8": [ | |
-0.0033824159510061256, | |
-0.0005421323317911481, | |
0.03169508781149298, | |
0.007607487324917605, | |
-0.1432942383508097, | |
-0.061273359067658524, | |
0.4813596512583722, | |
0.7771857517005235, | |
0.3644418948353314, | |
-0.05194583810770904, | |
-0.027219029917056003, | |
0.049137179673607506, | |
0.003808752013890615, | |
-0.01495225833704823, | |
-0.0003029205147213668, | |
0.0018899503327594609, | |
], | |
} | |
# ---------------------------------------------------------------------------- | |
# Helpers for constructing transformation matrices. | |
def matrix(*rows, device=None): | |
assert all(len(row) == len(rows[0]) for row in rows) | |
elems = [x for row in rows for x in row] | |
ref = [x for x in elems if isinstance(x, torch.Tensor)] | |
if len(ref) == 0: | |
return constant(np.asarray(rows), device=device) | |
assert device is None or device == ref[0].device | |
elems = [ | |
x if isinstance(x, torch.Tensor) else constant(x, shape=ref[0].shape, device=ref[0].device) for x in elems | |
] | |
return torch.stack(elems, dim=-1).reshape(ref[0].shape + (len(rows), -1)) | |
def translate2d(tx, ty, **kwargs): | |
return matrix([1, 0, tx], [0, 1, ty], [0, 0, 1], **kwargs) | |
def translate3d(tx, ty, tz, **kwargs): | |
return matrix([1, 0, 0, tx], [0, 1, 0, ty], [0, 0, 1, tz], [0, 0, 0, 1], **kwargs) | |
def scale2d(sx, sy, **kwargs): | |
return matrix([sx, 0, 0], [0, sy, 0], [0, 0, 1], **kwargs) | |
def scale3d(sx, sy, sz, **kwargs): | |
return matrix([sx, 0, 0, 0], [0, sy, 0, 0], [0, 0, sz, 0], [0, 0, 0, 1], **kwargs) | |
def rotate2d(theta, **kwargs): | |
return matrix( | |
[torch.cos(theta), torch.sin(-theta), 0], [torch.sin(theta), torch.cos(theta), 0], [0, 0, 1], **kwargs | |
) | |
def rotate3d(v, theta, **kwargs): | |
vx = v[..., 0] | |
vy = v[..., 1] | |
vz = v[..., 2] | |
s = torch.sin(theta) | |
c = torch.cos(theta) | |
cc = 1 - c | |
return matrix( | |
[vx * vx * cc + c, vx * vy * cc - vz * s, vx * vz * cc + vy * s, 0], | |
[vy * vx * cc + vz * s, vy * vy * cc + c, vy * vz * cc - vx * s, 0], | |
[vz * vx * cc - vy * s, vz * vy * cc + vx * s, vz * vz * cc + c, 0], | |
[0, 0, 0, 1], | |
**kwargs, | |
) | |
def translate2d_inv(tx, ty, **kwargs): | |
return translate2d(-tx, -ty, **kwargs) | |
def scale2d_inv(sx, sy, **kwargs): | |
return scale2d(1 / sx, 1 / sy, **kwargs) | |
def rotate2d_inv(theta, **kwargs): | |
return rotate2d(-theta, **kwargs) | |
# ---------------------------------------------------------------------------- | |
# Augmentation pipeline main class. | |
# All augmentations are disabled by default; individual augmentations can | |
# be enabled by setting their probability multipliers to 1. | |
class AugmentPipe: | |
def __init__( | |
self, | |
p=1, | |
xflip=0, | |
yflip=0, | |
rotate_int=0, | |
translate_int=0, | |
translate_int_max=0.125, | |
scale=0, | |
rotate_frac=0, | |
aniso=0, | |
translate_frac=0, | |
scale_std=0.2, | |
rotate_frac_max=1, | |
aniso_std=0.2, | |
aniso_rotate_prob=0.5, | |
translate_frac_std=0.125, | |
brightness=0, | |
contrast=0, | |
lumaflip=0, | |
hue=0, | |
saturation=0, | |
brightness_std=0.2, | |
contrast_std=0.5, | |
hue_max=1, | |
saturation_std=1, | |
): | |
super().__init__() | |
self.p = float(p) # Overall multiplier for augmentation probability. | |
# Pixel blitting. | |
self.xflip = float(xflip) # Probability multiplier for x-flip. | |
self.yflip = float(yflip) # Probability multiplier for y-flip. | |
self.rotate_int = float(rotate_int) # Probability multiplier for integer rotation. | |
self.translate_int = float(translate_int) # Probability multiplier for integer translation. | |
self.translate_int_max = float( | |
translate_int_max | |
) # Range of integer translation, relative to image dimensions. | |
# Geometric transformations. | |
self.scale = float(scale) # Probability multiplier for isotropic scaling. | |
self.rotate_frac = float(rotate_frac) # Probability multiplier for fractional rotation. | |
self.aniso = float(aniso) # Probability multiplier for anisotropic scaling. | |
self.translate_frac = float(translate_frac) # Probability multiplier for fractional translation. | |
self.scale_std = float(scale_std) # Log2 standard deviation of isotropic scaling. | |
self.rotate_frac_max = float(rotate_frac_max) # Range of fractional rotation, 1 = full circle. | |
self.aniso_std = float(aniso_std) # Log2 standard deviation of anisotropic scaling. | |
self.aniso_rotate_prob = float( | |
aniso_rotate_prob | |
) # Probability of doing anisotropic scaling w.r.t. rotated coordinate frame. | |
self.translate_frac_std = float( | |
translate_frac_std | |
) # Standard deviation of frational translation, relative to image dimensions. | |
# Color transformations. | |
self.brightness = float(brightness) # Probability multiplier for brightness. | |
self.contrast = float(contrast) # Probability multiplier for contrast. | |
self.lumaflip = float(lumaflip) # Probability multiplier for luma flip. | |
self.hue = float(hue) # Probability multiplier for hue rotation. | |
self.saturation = float(saturation) # Probability multiplier for saturation. | |
self.brightness_std = float(brightness_std) # Standard deviation of brightness. | |
self.contrast_std = float(contrast_std) # Log2 standard deviation of contrast. | |
self.hue_max = float(hue_max) # Range of hue rotation, 1 = full circle. | |
self.saturation_std = float(saturation_std) # Log2 standard deviation of saturation. | |
def __call__(self, images): | |
F = None | |
repeat_frames = False | |
if len(images.shape) == 5: | |
N, C, F, H, W = images.shape | |
images = rearrange(images, "n c f h w -> (n f) c h w") | |
repeat_frames = True | |
elif len(images.shape) == 4: | |
N, C, H, W = images.shape | |
device = images.device | |
labels = [torch.zeros([images.shape[0], 0], device=device)] | |
# --------------- | |
# Pixel blitting. | |
# --------------- | |
if self.xflip > 0: | |
w = torch.randint(2, [N, 1, 1, 1], device=device) | |
w = torch.where(torch.rand([N, 1, 1, 1], device=device) < self.xflip * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n c h w -> (n f) c h w", f=F) | |
images = torch.where(w == 1, images.flip(3), images) | |
labels += [w] | |
if self.yflip > 0: | |
w = torch.randint(2, [N, 1, 1, 1], device=device) | |
w = torch.where(torch.rand([N, 1, 1, 1], device=device) < self.yflip * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n c h w -> (n f) c h w", f=F) | |
images = torch.where(w == 1, images.flip(2), images) | |
labels += [w] | |
if self.rotate_int > 0: | |
w = torch.randint(4, [N, 1, 1, 1], device=device) | |
w = torch.where(torch.rand([N, 1, 1, 1], device=device) < self.rotate_int * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n c h w -> (n f) c h w", f=F) | |
images = torch.where((w == 1) | (w == 2), images.flip(3), images) | |
images = torch.where((w == 2) | (w == 3), images.flip(2), images) | |
images = torch.where((w == 1) | (w == 3), images.transpose(2, 3), images) | |
labels += [(w == 1) | (w == 2), (w == 2) | (w == 3)] | |
if self.translate_int > 0: | |
w = torch.rand([2, N, 1, 1, 1], device=device) * 2 - 1 | |
w = torch.where( | |
torch.rand([1, N, 1, 1, 1], device=device) < self.translate_int * self.p, w, torch.zeros_like(w) | |
) | |
if repeat_frames: | |
w = repeat(w, "* n c h w -> * (n f) c h w", f=F) | |
tx = w[0].mul(W * self.translate_int_max).round().to(torch.int64) | |
ty = w[1].mul(H * self.translate_int_max).round().to(torch.int64) | |
b, c, y, x = torch.meshgrid(*(torch.arange(x, device=device) for x in images.shape), indexing="ij") | |
x = W - 1 - (W - 1 - (x - tx) % (W * 2 - 2)).abs() | |
y = H - 1 - (H - 1 - (y + ty) % (H * 2 - 2)).abs() | |
images = images.flatten()[(((b * C) + c) * H + y) * W + x] | |
labels += [tx.div(W * self.translate_int_max), ty.div(H * self.translate_int_max)] | |
# ------------------------------------------------ | |
# Select parameters for geometric transformations. | |
# ------------------------------------------------ | |
I_3 = torch.eye(3, device=device) | |
G_inv = I_3 | |
if self.scale > 0: | |
w = torch.randn([N], device=device) | |
w = torch.where(torch.rand([N], device=device) < self.scale * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n -> (n f)", f=F) | |
s = w.mul(self.scale_std).exp2() | |
G_inv = G_inv @ scale2d_inv(s, s) | |
labels += [w] | |
if self.rotate_frac > 0: | |
w = (torch.rand([N], device=device) * 2 - 1) * (np.pi * self.rotate_frac_max) | |
w = torch.where(torch.rand([N], device=device) < self.rotate_frac * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n -> (n f)", f=F) | |
G_inv = G_inv @ rotate2d_inv(-w) | |
labels += [w.cos() - 1, w.sin()] | |
if self.aniso > 0: | |
w = torch.randn([N], device=device) | |
r = (torch.rand([N], device=device) * 2 - 1) * np.pi | |
w = torch.where(torch.rand([N], device=device) < self.aniso * self.p, w, torch.zeros_like(w)) | |
r = torch.where(torch.rand([N], device=device) < self.aniso_rotate_prob, r, torch.zeros_like(r)) | |
if repeat_frames: | |
w = repeat(w, "n -> (n f)", f=F) | |
r = repeat(r, "n -> (n f)", f=F) | |
s = w.mul(self.aniso_std).exp2() | |
G_inv = G_inv @ rotate2d_inv(r) @ scale2d_inv(s, 1 / s) @ rotate2d_inv(-r) | |
labels += [w * r.cos(), w * r.sin()] | |
if self.translate_frac > 0: | |
w = torch.randn([2, N], device=device) | |
w = torch.where(torch.rand([1, N], device=device) < self.translate_frac * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "c n -> c (n f)", f=F) | |
G_inv = G_inv @ translate2d_inv( | |
w[0].mul(W * self.translate_frac_std), w[1].mul(H * self.translate_frac_std) | |
) | |
labels += [w[0], w[1]] | |
# ---------------------------------- | |
# Execute geometric transformations. | |
# ---------------------------------- | |
if G_inv is not I_3: | |
cx = (W - 1) / 2 | |
cy = (H - 1) / 2 | |
cp = matrix([-cx, -cy, 1], [cx, -cy, 1], [cx, cy, 1], [-cx, cy, 1], device=device) # [idx, xyz] | |
cp = G_inv @ cp.t() # [batch, xyz, idx] | |
Hz = np.asarray(wavelets["sym6"], dtype=np.float32) | |
Hz_pad = len(Hz) // 4 | |
margin = cp[:, :2, :].permute(1, 0, 2).flatten(1) # [xy, batch * idx] | |
margin = torch.cat([-margin, margin]).max(dim=1).values # [x0, y0, x1, y1] | |
margin = margin + constant([Hz_pad * 2 - cx, Hz_pad * 2 - cy] * 2, device=device) | |
margin = margin.max(constant([0, 0] * 2, device=device)) | |
margin = margin.min(constant([W - 1, H - 1] * 2, device=device)) | |
mx0, my0, mx1, my1 = margin.ceil().to(torch.int32) | |
# Pad image and adjust origin. | |
images = torch.nn.functional.pad(input=images, pad=[mx0, mx1, my0, my1], mode="reflect") | |
G_inv = translate2d((mx0 - mx1) / 2, (my0 - my1) / 2) @ G_inv | |
# Upsample. | |
conv_weight = constant(Hz[None, None, ::-1], dtype=images.dtype, device=images.device).tile( | |
[images.shape[1], 1, 1] | |
) | |
conv_pad = (len(Hz) + 1) // 2 | |
images = torch.stack([images, torch.zeros_like(images)], dim=4).reshape( | |
N * default(F, 1), C, images.shape[2], -1 | |
)[:, :, :, :-1] | |
images = torch.nn.functional.conv2d( | |
images, conv_weight.unsqueeze(2), groups=images.shape[1], padding=[0, conv_pad] | |
) | |
images = torch.stack([images, torch.zeros_like(images)], dim=3).reshape( | |
N * default(F, 1), C, -1, images.shape[3] | |
)[:, :, :-1, :] | |
images = torch.nn.functional.conv2d( | |
images, conv_weight.unsqueeze(3), groups=images.shape[1], padding=[conv_pad, 0] | |
) | |
G_inv = scale2d(2, 2, device=device) @ G_inv @ scale2d_inv(2, 2, device=device) | |
G_inv = translate2d(-0.5, -0.5, device=device) @ G_inv @ translate2d_inv(-0.5, -0.5, device=device) | |
# Execute transformation. | |
shape = [N * default(F, 1), C, (H + Hz_pad * 2) * 2, (W + Hz_pad * 2) * 2] | |
G_inv = ( | |
scale2d(2 / images.shape[3], 2 / images.shape[2], device=device) | |
) | |
grid = torch.nn.functional.affine_grid(theta=G_inv[:, :2, :], size=shape, align_corners=False) | |
images = torch.nn.functional.grid_sample( | |
images, grid, mode="bilinear", padding_mode="zeros", align_corners=False | |
) | |
# Downsample and crop. | |
conv_weight = constant(Hz[None, None, :], dtype=images.dtype, device=images.device).tile( | |
[images.shape[1], 1, 1] | |
) | |
conv_pad = (len(Hz) - 1) // 2 | |
images = torch.nn.functional.conv2d( | |
images, conv_weight.unsqueeze(2), groups=images.shape[1], stride=[1, 2], padding=[0, conv_pad] | |
)[:, :, :, Hz_pad:-Hz_pad] | |
images = torch.nn.functional.conv2d( | |
images, conv_weight.unsqueeze(3), groups=images.shape[1], stride=[2, 1], padding=[conv_pad, 0] | |
)[:, :, Hz_pad:-Hz_pad, :] | |
# -------------------------------------------- | |
# Select parameters for color transformations. | |
# -------------------------------------------- | |
I_4 = torch.eye(4, device=device) | |
M = I_4 | |
luma_axis = constant(np.asarray([1, 1, 1, 0]) / np.sqrt(3), device=device) | |
if self.brightness > 0: | |
w = torch.randn([N], device=device) | |
w = torch.where(torch.rand([N], device=device) < self.brightness * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n -> (n f)", f=F) | |
b = w * self.brightness_std | |
M = translate3d(b, b, b) @ M | |
labels += [w] | |
if self.contrast > 0: | |
w = torch.randn([N], device=device) | |
w = torch.where(torch.rand([N], device=device) < self.contrast * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n -> (n f)", f=F) | |
c = w.mul(self.contrast_std).exp2() | |
M = scale3d(c, c, c) @ M | |
labels += [w] | |
if self.lumaflip > 0: | |
w = torch.randint(2, [N, 1, 1], device=device) | |
w = torch.where(torch.rand([N, 1, 1], device=device) < self.lumaflip * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n 1 1-> (n f) 1 1", f=F) | |
M = (I_4 - 2 * luma_axis.ger(luma_axis) * w) @ M | |
labels += [w] | |
if self.hue > 0: | |
w = (torch.rand([N], device=device) * 2 - 1) * (np.pi * self.hue_max) | |
w = torch.where(torch.rand([N], device=device) < self.hue * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n -> (n f)", f=F) | |
M = rotate3d(luma_axis, w) @ M | |
labels += [w.cos() - 1, w.sin()] | |
if self.saturation > 0: | |
w = torch.randn([N, 1, 1], device=device) | |
w = torch.where(torch.rand([N, 1, 1], device=device) < self.saturation * self.p, w, torch.zeros_like(w)) | |
if repeat_frames: | |
w = repeat(w, "n 1 1-> (n f) 1 1", f=F) | |
M = (luma_axis.ger(luma_axis) + (I_4 - luma_axis.ger(luma_axis)) * w.mul(self.saturation_std).exp2()) @ M | |
labels += [w] | |
# ------------------------------ | |
# Execute color transformations. | |
# ------------------------------ | |
if M is not I_4: | |
images = images.reshape([N * default(F, 1), C, H * W]) | |
if C == 3: | |
images = M[:, :3, :3] @ images + M[:, :3, 3:] | |
elif C == 1: | |
M = M[:, :3, :].mean(dim=1, keepdims=True) | |
images = images * M[:, :, :3].sum(dim=2, keepdims=True) + M[:, :, 3:] | |
else: | |
raise ValueError("Image must be RGB (3 channels) or L (1 channel)") | |
images = images.reshape([N * default(F, 1), C, H, W]) | |
labels = torch.cat([x.to(torch.float32).reshape(N, -1) for x in labels], dim=1) | |
if F is not None: | |
images = rearrange(images, "(n f) c h w -> n c f h w", f=F) | |
labels = rearrange(labels, "n (f l) -> n f l", f=F)[:, 0] | |
# assert labels[:, 0].eq(labels[:, 1]).all() # check that all frames have the same labels | |
# labels = labels[:, 0] # its the same for all frames, so we can just take the first one | |
return images, labels | |
# ---------------------------------------------------------------------------- | |