Spaces:
Running
Running
File size: 6,956 Bytes
817809c 85e469d a63daec 85e469d 58b25bf a63daec 85e469d 58b25bf 85e469d 58b25bf 85e469d 58b25bf 85e469d 817809c 85e469d 58b25bf a63daec 85e469d 58b25bf 85e469d 58b25bf 85e469d 58b25bf 85e469d a63daec 85e469d a63daec 85e469d a63daec 85e469d a63daec 85e469d 817809c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
import pandas as pd
import numpy as np
from search import search_images_by_text, get_similar_images
import requests
from io import BytesIO
def create_collection_url(row):
base_url = "https://www.vogue.com/fashion-shows/"
season = str(row["season"]).lower()
year = str(row["year"])
category = str(row["category"]).lower() if pd.notna(row["category"]) and row["category"] and str(row["category"]).lower() != "nan" else None
designer = str(row["designer"]).lower().replace(" ", "-")
# Add city if available
city = str(row["city"]).lower().replace(" ", "-") if pd.notna(row["city"]) and row["city"] and str(row["city"]).lower() != "nan" else None
if pd.isna(category) or category is None or category == "nan":
if city:
return f"{base_url}{city}-{season}-{year}/{designer}"
else:
return f"{base_url}{season}-{year}/{designer}"
else:
if city:
return f"{base_url}{city}-{season}-{year}-{category}/{designer}"
else:
return f"{base_url}{season}-{year}-{category}/{designer}"
import requests
from io import BytesIO
#@st.cache_data(show_spinner="Loading FashionDB...")
def load_data_hf():
# Load the Parquet file directly from Hugging Face
df_url = "https://huggingface.co/datasets/traopia/vogue_runway_small/resolve/main/VogueRunway.parquet"
df = pd.read_parquet(df_url)
# Load the .npy file using requests
npy_url = "https://huggingface.co/datasets/traopia/vogue_runway_small/resolve/main/VogueRunway_image.npy"
response = requests.get(npy_url)
response.raise_for_status() # Raise error if download fails
embeddings = np.load(BytesIO(response.content))
df['collection'] = df.apply(create_collection_url, axis=1)
return df, embeddings
from huggingface_hub import hf_hub_download
def load_data1():
# Login using e.g. `huggingface-cli login` to access this dataset
path = hf_hub_download(
repo_id="traopia/fashion_show_data_all_embeddings",
filename="fashion_show_data_all_embeddings.json"
)
df = pd.read_json(path, lines = True)
#df = pd.read_json("hf://datasets/traopia/fashion_show_data_all_embeddings.json/fashion_show_data_all_embeddings.json", lines=True)
df["fashion_clip_image"] = df["fashion_clip_image"].apply(lambda x: x[0] if isinstance(x, list) else x)
df["image_urls"] = df["image_urls"].apply(lambda x: x[0] if x is not None else None)
df = df.rename(columns={"fashion_house":"designer", "image_urls":"url", "URL":"collection"})
df = df.dropna(subset="fashion_clip_image")
df = df.reset_index(drop=True)
df["key"] = df.index
embeddings = np.vstack(df["fashion_clip_image"].values)
return df, embeddings
df, embeddings = load_data_hf()
# Filter and search
def filter_and_search(fashion_house, category, season, start_year, end_year, query):
filtered = df.copy()
if fashion_house:
filtered = filtered[filtered['designer'].isin(fashion_house)]
if category:
filtered = filtered[filtered['category'].isin(category)]
if season:
filtered = filtered[filtered['season'].isin(season)]
filtered = filtered[(filtered['year'] >= start_year) & (filtered['year'] <= end_year)]
if query:
results = search_images_by_text(query, filtered, embeddings)
else:
results = filtered.head(30)
image_urls = results["url"].tolist()
metadata = results.to_dict(orient="records")
return image_urls, metadata
# Display metadata and similar
def show_metadata(idx, metadata):
item = metadata[idx]
out = ""
for field in ["designer", "season", "year", "category"]:
if field in item and pd.notna(item[field]):
out += f"**{field.title()}**: {item[field]}\n"
if 'collection' in item and pd.notna(item['collection']):
out += f"\n[View Collection]({item['collection']})"
return out
def find_similar(idx, metadata):
key = metadata[idx]["key"]
similar_df = get_similar_images(df, key, embeddings, top_k=5)
return similar_df["url"].tolist(), similar_df.to_dict(orient="records")
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# 👗 FashionDB Explorer")
with gr.Row():
fashion_house = gr.Dropdown(label="Fashion House", choices=sorted(df["designer"].dropna().unique()), multiselect=True)
category = gr.Dropdown(label="Category", choices=sorted(df["category"].dropna().unique()), multiselect=True)
season = gr.Dropdown(label="Season", choices=sorted(df["season"].dropna().unique()), multiselect=True)
#year_range = gr.RangeSlider(label="Year Range", minimum=int(df['year'].min()), maximum=int(df['year'].max()), value=(2000, 2025), step=1)
min_year = int(df['year'].min())
max_year = int(df['year'].max())
start_year = gr.Slider(label="Start Year", minimum=min_year, maximum=max_year, value=2000, step=1)
end_year = gr.Slider(label="End Year", minimum=min_year, maximum=max_year, value=2024, step=1)
query = gr.Textbox(label="Search", placeholder="e.g., pink dress")
search_button = gr.Button("Search")
result_gallery = gr.Gallery(label="Search Results", columns=5, height="auto")
metadata_output = gr.Markdown()
similar_gallery = gr.Gallery(label="Similar Images", columns = 5, height="auto")
metadata_state = gr.State([])
selected_idx = gr.Number(value=0, visible=False)
def handle_search(*args):
imgs, meta = filter_and_search(*args)
return imgs, meta, "", []
search_button.click(
handle_search,
inputs=[fashion_house, category, season, start_year, end_year, query],
outputs=[result_gallery, metadata_state, metadata_output, similar_gallery]
)
def handle_click(evt: gr.SelectData, metadata):
idx = evt.index
md = show_metadata(idx, metadata)
return idx, md
result_gallery.select(
handle_click,
inputs=[metadata_state],
outputs=[selected_idx, metadata_output]
)
# def show_similar(idx, metadata):
# return find_similar(int(idx), metadata)
def show_similar(idx, metadata):
similar_images, similar_metadata = find_similar(int(idx), metadata)
return similar_images, similar_metadata
similar_metadata_state = gr.State()
similar_metadata_output = gr.Markdown()
show_similar_button = gr.Button("Show Similar Images")
show_similar_button.click(
show_similar,
inputs=[selected_idx, metadata_state],
outputs=[similar_gallery, similar_metadata_state]
)
def handle_similar_click(evt: gr.SelectData, metadata):
idx = evt.index
md = show_metadata(idx, metadata)
return idx, md
similar_gallery.select(
handle_similar_click,
inputs=[similar_metadata_state],
outputs=[selected_idx, similar_metadata_output]
)
demo.launch() |