Spaces:
Running
Running
# from huggingface_hub import InferenceClient | |
# import os | |
# # Use a Hugging Face inference endpoint like "google/gemma-1.1-7b-it" | |
# # You must have access to this model (either public or via token) | |
# HUGGINGFACE_API_TOKEN = os.getenv("HF_TOKEN") # Add this in your HF Space's secret settings | |
# DEFAULT_MODEL = "google/gemma-1.1-7b-it" | |
# client = InferenceClient(DEFAULT_MODEL, token=HUGGINGFACE_API_TOKEN) | |
# def send_chat_prompt(prompt: str, model: str, system_prompt: str) -> str: | |
# full_prompt = f"<|start_of_turn|>system\n{system_prompt}<|end_of_turn|>\n" \ | |
# f"<|start_of_turn|>user\n{prompt}<|end_of_turn|>\n" \ | |
# f"<|start_of_turn|>assistant\n" | |
# response = client.text_generation( | |
# prompt=full_prompt, | |
# max_new_tokens=500, | |
# temperature=0.5, | |
# stop_sequences=["<|end_of_turn|>"] | |
# ) | |
# return response.strip() | |
# def main_generate(prompt, model=DEFAULT_MODEL, system_prompt="You are a helpful assistant that generates SPARQL queries."): | |
# response = send_chat_prompt(prompt, model, system_prompt) | |
# response = response.replace('```', '').replace('json', '').strip() | |
# return response | |
# from sentence_transformers import SentenceTransformer | |
# model = SentenceTransformer("thenlper/gte-large") # downloaded from Hugging Face | |
# def get_embeddings(texts): | |
# if isinstance(texts, str): | |
# texts = [texts] | |
# embeddings = model.encode(texts, convert_to_numpy=True) | |
# return embeddings | |
import ollama | |
import openai | |
def get_embeddings(texts): | |
response = ollama.embed(model="mxbai-embed-large", input=texts) | |
embeddings = response["embeddings"] | |
return embeddings | |
openai_api_key = "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" | |
#generate | |
def send_chat_prompt(prompt, model, system_prompt ): | |
client = openai.OpenAI( | |
base_url="http://localhost:11434/v1" if not "gpt" in model else None, | |
api_key= "ollama" if not "gpt" in model else openai_api_key) | |
resp = client.chat.completions.create( | |
model=model, | |
temperature = 0.5 , | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": prompt}]) | |
response = resp.choices[0].message.content | |
return response | |
def main_generate(prompt,model, system_prompt): | |
response = send_chat_prompt(prompt,model, system_prompt) | |
response = response.replace('```','').replace('json','') | |
#print(f" {model} Response:", response) | |
return response | |