Spaces:
Running
Running
import gradio as gr | |
from datasets import load_dataset | |
from trl import SFTTrainer, SFTConfig | |
from transformers import AutoTokenizer | |
import pandas as pd | |
import numpy as np | |
TRUNCATION_LENGTHS = [128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768] | |
SEED = 42 | |
N_SAMPLES = 1000 | |
CODE_TEMPLATE = """ | |
training_args = SFTConfig( | |
..., | |
max_length={}, | |
)""" | |
def benchmark(model_name, dataset_name): | |
print(f"Running benchmark for model: {model_name} on dataset: {dataset_name}...") | |
print("Loading dataset...") | |
dataset = load_dataset(dataset_name, split="train", streaming=True).shuffle(seed=SEED).take(N_SAMPLES) | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
print("Tokenizing dataset...") | |
config = SFTConfig(max_length=None, bf16=False) | |
tokenized_dataset = SFTTrainer._prepare_dataset( | |
None, dataset, tokenizer, config, packing=False, formatting_func=None, dataset_name="train" | |
) | |
print("Computing the sequence lengths and total tokens") | |
sequence_lengths = [len(sample["input_ids"]) for sample in tokenized_dataset] | |
total_tokens = sum(sequence_lengths) | |
print("Computing the truncation ratios") | |
truncation_ratios = [] | |
recommended = None | |
for max_len in TRUNCATION_LENGTHS: | |
total_truncated_tokens = sum(max(length - max_len, 0) for length in sequence_lengths) | |
truncation_ratio = total_truncated_tokens / total_tokens * 100 | |
truncation_ratios.append(truncation_ratio) | |
if recommended is None and truncation_ratio < 5.0: | |
recommended = max_len | |
hist = np.histogram(sequence_lengths, bins=50) | |
lengths_distribution = pd.DataFrame({ | |
"max_length": (hist[1][:-1] + hist[1][1:])/2, | |
"Ratio (%)": hist[0]/N_SAMPLES*100, | |
}) | |
truncation_data = pd.DataFrame({ | |
"max_length": [str(value) for value in TRUNCATION_LENGTHS], | |
"Ratio (%)": truncation_ratios, | |
}) | |
return lengths_distribution, truncation_data, CODE_TEMPLATE.format(recommended) | |
with gr.Blocks() as demo: | |
model_input = gr.Textbox(label="Model Name", value="Qwen/Qwen3-0.6B") | |
dataset_input = gr.Textbox(label="Dataset Name", value="trl-lib/tldr") | |
run_button = gr.Button("Run estimation") | |
lengths_plot = gr.BarPlot(None, title="Length distribution", x="max_length", y="Ratio (%)") | |
truncation_ratio_plot = gr.BarPlot(None, title="Truncation ratio (how many tokens are discarded)", x="max_length", y="Ratio (%)") | |
recommended_code = gr.Code(CODE_TEMPLATE.format("..."), language="python", label="Recommended configuration") | |
run_button.click(fn=benchmark, inputs=[model_input, dataset_input], outputs=[lengths_plot, truncation_ratio_plot, recommended_code]) | |
with gr.Accordion("See details", open=False): | |
gr.Markdown(""" | |
This tool helps you choose an appropriate `max_length` value for your SFT training (`SFTConfig`) by analyzing the tokenized dataset. | |
**How it works:** | |
- Randomly samples 1,000 examples from your dataset. | |
- Prepares and tokenizes the data exactly as `SFTTrainer` would. | |
- Generates two visualizations: | |
- **Sequence Length Distribution:** Shows how long your tokenized sequences are. | |
- **Truncation Ratio:** Estimates the percentage of tokens that would be discarded (truncated) for different `max_length` values. | |
- Recommends the smallest `max_length` where truncation affects less than 5% of the tokens. | |
Use this tool to balance efficiency and memory usage when setting your `max_length` parameter. | |
""") | |
demo.launch() | |