Update app.py
Browse files
app.py
CHANGED
@@ -22,11 +22,10 @@ emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
|
|
22 |
"neutral"]
|
23 |
|
24 |
# Function to classify emotions in batches
|
25 |
-
def classify_emotions_in_batches(texts, batch_size=64):
|
26 |
results = []
|
27 |
start_time = time.time()
|
28 |
-
|
29 |
-
for i in range(0, num_batches * batch_size, batch_size):
|
30 |
batch = texts[i:i+batch_size]
|
31 |
inputs = tokenizer(batch, return_tensors="pt", truncation=True, padding=True).to(device)
|
32 |
with torch.no_grad():
|
@@ -39,7 +38,9 @@ def classify_emotions_in_batches(texts, batch_size=64):
|
|
39 |
batch_time = time.time() - start_time
|
40 |
st.write(f"Processed batch {i//batch_size + 1} of {num_batches} in {batch_time:.2f} seconds")
|
41 |
start_time = time.time()
|
42 |
-
|
|
|
|
|
43 |
|
44 |
# Streamlit interface
|
45 |
st.title("Enron Emails Emotion Analysis")
|
@@ -54,8 +55,10 @@ if st.button("Run Inference"):
|
|
54 |
# Apply emotion classification to the email content
|
55 |
with st.spinner('Running inference...'):
|
56 |
email_texts = enron_data['body'].tolist()
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
enron_data.to_csv("enron_emails_with_emotions.csv", index=False)
|
61 |
-
st.success("Inference completed and results saved!")
|
|
|
22 |
"neutral"]
|
23 |
|
24 |
# Function to classify emotions in batches
|
25 |
+
def classify_emotions_in_batches(texts, batch_size=64, num_batches=20):
|
26 |
results = []
|
27 |
start_time = time.time()
|
28 |
+
for i in range(0, min(num_batches * batch_size, len(texts)), batch_size):
|
|
|
29 |
batch = texts[i:i+batch_size]
|
30 |
inputs = tokenizer(batch, return_tensors="pt", truncation=True, padding=True).to(device)
|
31 |
with torch.no_grad():
|
|
|
38 |
batch_time = time.time() - start_time
|
39 |
st.write(f"Processed batch {i//batch_size + 1} of {num_batches} in {batch_time:.2f} seconds")
|
40 |
start_time = time.time()
|
41 |
+
|
42 |
+
# Ensure results length matches the processed texts length
|
43 |
+
return results[:min(num_batches * batch_size, len(texts))]
|
44 |
|
45 |
# Streamlit interface
|
46 |
st.title("Enron Emails Emotion Analysis")
|
|
|
55 |
# Apply emotion classification to the email content
|
56 |
with st.spinner('Running inference...'):
|
57 |
email_texts = enron_data['body'].tolist()
|
58 |
+
results = classify_emotions_in_batches(email_texts, batch_size=64)
|
59 |
+
|
60 |
+
# Add results to the DataFrame and save
|
61 |
+
enron_data = enron_data.iloc[:len(results)].copy()
|
62 |
+
enron_data['emotion'] = results
|
63 |
|
64 |
+
# Save the results to a CSV f
|
|
|
|