cirimus's picture
Create app.py
db0f499 verified
raw
history blame
690 Bytes
import gradio as gr
from transformers import pipeline
# Load the model
model_name = "cirimus/modernbert-base-go-emotions"
classifier = pipeline("text-classification", model=model_name, top_k=None)
def classify_text(text):
predictions = classifier(text)
return {pred["label"]: pred["score"] for pred in predictions[0]}
# Create the Gradio interface
interface = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(lines=2, placeholder="Enter text to analyze emotions..."),
outputs=gr.Label(num_top_classes=5),
title="Emotion Classifier",
description="Enter a sentence to see its associated emotions and confidence scores.",
)
# Launch the app
interface.launch()