Spaces:
Configuration error
Configuration error
fix build issue and env
Browse files- .gitignore +1 -0
- Dockerfile +1 -0
- pitch.py +952 -0
- utils/utils.py +3 -5
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
venv
|
| 2 |
env
|
|
|
|
| 3 |
__pycache__
|
|
|
|
| 1 |
venv
|
| 2 |
env
|
| 3 |
+
accounts
|
| 4 |
__pycache__
|
Dockerfile
CHANGED
|
@@ -33,6 +33,7 @@ COPY utils.py /usr/local/lib/python3.10/site-packages/librosa/feature/utils.py
|
|
| 33 |
COPY utils/utils.py /usr/local/lib/python3.10/site-packages/librosa/util/utils.py
|
| 34 |
COPY matching.py /usr/local/lib/python3.10/site-packages/librosa/util/matching.py
|
| 35 |
COPY spectrum.py /usr/local/lib/python3.10/site-packages/librosa/core/spectrum.py
|
|
|
|
| 36 |
# RUN cd /tmp && mkdir cache1
|
| 37 |
|
| 38 |
ENV NUMBA_CACHE_DIR=/tmp
|
|
|
|
| 33 |
COPY utils/utils.py /usr/local/lib/python3.10/site-packages/librosa/util/utils.py
|
| 34 |
COPY matching.py /usr/local/lib/python3.10/site-packages/librosa/util/matching.py
|
| 35 |
COPY spectrum.py /usr/local/lib/python3.10/site-packages/librosa/core/spectrum.py
|
| 36 |
+
COPY pitch.py /usr/local/lib/python3.10/site-packages/librosa/core/pitch.py
|
| 37 |
# RUN cd /tmp && mkdir cache1
|
| 38 |
|
| 39 |
ENV NUMBA_CACHE_DIR=/tmp
|
pitch.py
ADDED
|
@@ -0,0 +1,952 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""Pitch-tracking and tuning estimation"""
|
| 4 |
+
|
| 5 |
+
import warnings
|
| 6 |
+
import numpy as np
|
| 7 |
+
import scipy
|
| 8 |
+
import numba
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
from .spectrum import _spectrogram
|
| 12 |
+
from . import convert
|
| 13 |
+
from .._cache import cache
|
| 14 |
+
from .. import util
|
| 15 |
+
from .. import sequence
|
| 16 |
+
from ..util.exceptions import ParameterError
|
| 17 |
+
from numpy.typing import ArrayLike
|
| 18 |
+
from typing import Any, Callable, Optional, Tuple, Union
|
| 19 |
+
from .._typing import _WindowSpec, _PadMode, _PadModeSTFT
|
| 20 |
+
|
| 21 |
+
__all__ = ["estimate_tuning", "pitch_tuning", "piptrack", "yin", "pyin"]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def estimate_tuning(
|
| 25 |
+
*,
|
| 26 |
+
y: Optional[np.ndarray] = None,
|
| 27 |
+
sr: float = 22050,
|
| 28 |
+
S: Optional[np.ndarray] = None,
|
| 29 |
+
n_fft: Optional[int] = 2048,
|
| 30 |
+
resolution: float = 0.01,
|
| 31 |
+
bins_per_octave: int = 12,
|
| 32 |
+
**kwargs: Any,
|
| 33 |
+
) -> float:
|
| 34 |
+
"""Estimate the tuning of an audio time series or spectrogram input.
|
| 35 |
+
|
| 36 |
+
Parameters
|
| 37 |
+
----------
|
| 38 |
+
y : np.ndarray [shape=(..., n)] or None
|
| 39 |
+
audio signal. Multi-channel is supported..
|
| 40 |
+
sr : number > 0 [scalar]
|
| 41 |
+
audio sampling rate of ``y``
|
| 42 |
+
S : np.ndarray [shape=(..., d, t)] or None
|
| 43 |
+
magnitude or power spectrogram
|
| 44 |
+
n_fft : int > 0 [scalar] or None
|
| 45 |
+
number of FFT bins to use, if ``y`` is provided.
|
| 46 |
+
resolution : float in `(0, 1)`
|
| 47 |
+
Resolution of the tuning as a fraction of a bin.
|
| 48 |
+
0.01 corresponds to measurements in cents.
|
| 49 |
+
bins_per_octave : int > 0 [scalar]
|
| 50 |
+
How many frequency bins per octave
|
| 51 |
+
**kwargs : additional keyword arguments
|
| 52 |
+
Additional arguments passed to `piptrack`
|
| 53 |
+
|
| 54 |
+
Returns
|
| 55 |
+
-------
|
| 56 |
+
tuning: float in `[-0.5, 0.5)`
|
| 57 |
+
estimated tuning deviation (fractions of a bin).
|
| 58 |
+
|
| 59 |
+
Note that if multichannel input is provided, a single tuning estimate is provided spanning all
|
| 60 |
+
channels.
|
| 61 |
+
|
| 62 |
+
See Also
|
| 63 |
+
--------
|
| 64 |
+
piptrack : Pitch tracking by parabolic interpolation
|
| 65 |
+
|
| 66 |
+
Examples
|
| 67 |
+
--------
|
| 68 |
+
With time-series input
|
| 69 |
+
|
| 70 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
| 71 |
+
>>> librosa.estimate_tuning(y=y, sr=sr)
|
| 72 |
+
-0.08000000000000002
|
| 73 |
+
|
| 74 |
+
In tenths of a cent
|
| 75 |
+
|
| 76 |
+
>>> librosa.estimate_tuning(y=y, sr=sr, resolution=1e-3)
|
| 77 |
+
-0.016000000000000014
|
| 78 |
+
|
| 79 |
+
Using spectrogram input
|
| 80 |
+
|
| 81 |
+
>>> S = np.abs(librosa.stft(y))
|
| 82 |
+
>>> librosa.estimate_tuning(S=S, sr=sr)
|
| 83 |
+
-0.08000000000000002
|
| 84 |
+
|
| 85 |
+
Using pass-through arguments to `librosa.piptrack`
|
| 86 |
+
|
| 87 |
+
>>> librosa.estimate_tuning(y=y, sr=sr, n_fft=8192,
|
| 88 |
+
... fmax=librosa.note_to_hz('G#9'))
|
| 89 |
+
-0.08000000000000002
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
pitch, mag = piptrack(y=y, sr=sr, S=S, n_fft=n_fft, **kwargs)
|
| 93 |
+
|
| 94 |
+
# Only count magnitude where frequency is > 0
|
| 95 |
+
pitch_mask = pitch > 0
|
| 96 |
+
|
| 97 |
+
if pitch_mask.any():
|
| 98 |
+
threshold = np.median(mag[pitch_mask])
|
| 99 |
+
else:
|
| 100 |
+
threshold = 0.0
|
| 101 |
+
|
| 102 |
+
return pitch_tuning(
|
| 103 |
+
pitch[(mag >= threshold) & pitch_mask],
|
| 104 |
+
resolution=resolution,
|
| 105 |
+
bins_per_octave=bins_per_octave,
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def pitch_tuning(
|
| 110 |
+
frequencies: ArrayLike, *, resolution: float = 0.01, bins_per_octave: int = 12
|
| 111 |
+
) -> float:
|
| 112 |
+
"""Given a collection of pitches, estimate its tuning offset
|
| 113 |
+
(in fractions of a bin) relative to A440=440.0Hz.
|
| 114 |
+
|
| 115 |
+
Parameters
|
| 116 |
+
----------
|
| 117 |
+
frequencies : array-like, float
|
| 118 |
+
A collection of frequencies detected in the signal.
|
| 119 |
+
See `piptrack`
|
| 120 |
+
resolution : float in `(0, 1)`
|
| 121 |
+
Resolution of the tuning as a fraction of a bin.
|
| 122 |
+
0.01 corresponds to cents.
|
| 123 |
+
bins_per_octave : int > 0 [scalar]
|
| 124 |
+
How many frequency bins per octave
|
| 125 |
+
|
| 126 |
+
Returns
|
| 127 |
+
-------
|
| 128 |
+
tuning: float in `[-0.5, 0.5)`
|
| 129 |
+
estimated tuning deviation (fractions of a bin)
|
| 130 |
+
|
| 131 |
+
See Also
|
| 132 |
+
--------
|
| 133 |
+
estimate_tuning : Estimating tuning from time-series or spectrogram input
|
| 134 |
+
|
| 135 |
+
Examples
|
| 136 |
+
--------
|
| 137 |
+
>>> # Generate notes at +25 cents
|
| 138 |
+
>>> freqs = librosa.cqt_frequencies(n_bins=24, fmin=55, tuning=0.25)
|
| 139 |
+
>>> librosa.pitch_tuning(freqs)
|
| 140 |
+
0.25
|
| 141 |
+
|
| 142 |
+
>>> # Track frequencies from a real spectrogram
|
| 143 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
| 144 |
+
>>> freqs, times, mags = librosa.reassigned_spectrogram(y, sr=sr,
|
| 145 |
+
... fill_nan=True)
|
| 146 |
+
>>> # Select out pitches with high energy
|
| 147 |
+
>>> freqs = freqs[mags > np.median(mags)]
|
| 148 |
+
>>> librosa.pitch_tuning(freqs)
|
| 149 |
+
-0.07
|
| 150 |
+
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
frequencies = np.atleast_1d(frequencies)
|
| 154 |
+
|
| 155 |
+
# Trim out any DC components
|
| 156 |
+
frequencies = frequencies[frequencies > 0]
|
| 157 |
+
|
| 158 |
+
if not np.any(frequencies):
|
| 159 |
+
warnings.warn(
|
| 160 |
+
"Trying to estimate tuning from empty frequency set.", stacklevel=2
|
| 161 |
+
)
|
| 162 |
+
return 0.0
|
| 163 |
+
|
| 164 |
+
# Compute the residual relative to the number of bins
|
| 165 |
+
residual = np.mod(bins_per_octave * convert.hz_to_octs(frequencies), 1.0)
|
| 166 |
+
|
| 167 |
+
# Are we on the wrong side of the semitone?
|
| 168 |
+
# A residual of 0.95 is more likely to be a deviation of -0.05
|
| 169 |
+
# from the next tone up.
|
| 170 |
+
residual[residual >= 0.5] -= 1.0
|
| 171 |
+
|
| 172 |
+
bins = np.linspace(-0.5, 0.5, int(np.ceil(1.0 / resolution)) + 1)
|
| 173 |
+
|
| 174 |
+
counts, tuning = np.histogram(residual, bins)
|
| 175 |
+
|
| 176 |
+
# return the histogram peak
|
| 177 |
+
tuning_est: float = tuning[np.argmax(counts)]
|
| 178 |
+
return tuning_est
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
@cache(level=30)
|
| 182 |
+
def piptrack(
|
| 183 |
+
*,
|
| 184 |
+
y: Optional[np.ndarray] = None,
|
| 185 |
+
sr: float = 22050,
|
| 186 |
+
S: Optional[np.ndarray] = None,
|
| 187 |
+
n_fft: Optional[int] = 2048,
|
| 188 |
+
hop_length: Optional[int] = None,
|
| 189 |
+
fmin: float = 150.0,
|
| 190 |
+
fmax: float = 4000.0,
|
| 191 |
+
threshold: float = 0.1,
|
| 192 |
+
win_length: Optional[int] = None,
|
| 193 |
+
window: _WindowSpec = "hann",
|
| 194 |
+
center: bool = True,
|
| 195 |
+
pad_mode: _PadModeSTFT = "constant",
|
| 196 |
+
ref: Optional[Union[float, Callable]] = None,
|
| 197 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 198 |
+
"""Pitch tracking on thresholded parabolically-interpolated STFT.
|
| 199 |
+
|
| 200 |
+
This implementation uses the parabolic interpolation method described by [#]_.
|
| 201 |
+
|
| 202 |
+
.. [#] https://ccrma.stanford.edu/~jos/sasp/Sinusoidal_Peak_Interpolation.html
|
| 203 |
+
|
| 204 |
+
Parameters
|
| 205 |
+
----------
|
| 206 |
+
y : np.ndarray [shape=(..., n)] or None
|
| 207 |
+
audio signal. Multi-channel is supported..
|
| 208 |
+
|
| 209 |
+
sr : number > 0 [scalar]
|
| 210 |
+
audio sampling rate of ``y``
|
| 211 |
+
|
| 212 |
+
S : np.ndarray [shape=(..., d, t)] or None
|
| 213 |
+
magnitude or power spectrogram
|
| 214 |
+
|
| 215 |
+
n_fft : int > 0 [scalar] or None
|
| 216 |
+
number of FFT bins to use, if ``y`` is provided.
|
| 217 |
+
|
| 218 |
+
hop_length : int > 0 [scalar] or None
|
| 219 |
+
number of samples to hop
|
| 220 |
+
|
| 221 |
+
threshold : float in `(0, 1)`
|
| 222 |
+
A bin in spectrum ``S`` is considered a pitch when it is greater than
|
| 223 |
+
``threshold * ref(S)``.
|
| 224 |
+
|
| 225 |
+
By default, ``ref(S)`` is taken to be ``max(S, axis=0)`` (the maximum value in
|
| 226 |
+
each column).
|
| 227 |
+
|
| 228 |
+
fmin : float > 0 [scalar]
|
| 229 |
+
lower frequency cutoff.
|
| 230 |
+
|
| 231 |
+
fmax : float > 0 [scalar]
|
| 232 |
+
upper frequency cutoff.
|
| 233 |
+
|
| 234 |
+
win_length : int <= n_fft [scalar]
|
| 235 |
+
Each frame of audio is windowed by ``window``.
|
| 236 |
+
The window will be of length `win_length` and then padded
|
| 237 |
+
with zeros to match ``n_fft``.
|
| 238 |
+
|
| 239 |
+
If unspecified, defaults to ``win_length = n_fft``.
|
| 240 |
+
|
| 241 |
+
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
|
| 242 |
+
- a window specification (string, tuple, or number);
|
| 243 |
+
see `scipy.signal.get_window`
|
| 244 |
+
- a window function, such as `scipy.signal.windows.hann`
|
| 245 |
+
- a vector or array of length ``n_fft``
|
| 246 |
+
|
| 247 |
+
.. see also:: `filters.get_window`
|
| 248 |
+
|
| 249 |
+
center : boolean
|
| 250 |
+
- If ``True``, the signal ``y`` is padded so that frame
|
| 251 |
+
``t`` is centered at ``y[t * hop_length]``.
|
| 252 |
+
- If ``False``, then frame ``t`` begins at ``y[t * hop_length]``
|
| 253 |
+
|
| 254 |
+
pad_mode : string
|
| 255 |
+
If ``center=True``, the padding mode to use at the edges of the signal.
|
| 256 |
+
By default, STFT uses zero-padding.
|
| 257 |
+
|
| 258 |
+
See also: `np.pad`.
|
| 259 |
+
|
| 260 |
+
ref : scalar or callable [default=np.max]
|
| 261 |
+
If scalar, the reference value against which ``S`` is compared for determining
|
| 262 |
+
pitches.
|
| 263 |
+
|
| 264 |
+
If callable, the reference value is computed as ``ref(S, axis=0)``.
|
| 265 |
+
|
| 266 |
+
Returns
|
| 267 |
+
-------
|
| 268 |
+
pitches, magnitudes : np.ndarray [shape=(..., d, t)]
|
| 269 |
+
Where ``d`` is the subset of FFT bins within ``fmin`` and ``fmax``.
|
| 270 |
+
|
| 271 |
+
``pitches[..., f, t]`` contains instantaneous frequency at bin
|
| 272 |
+
``f``, time ``t``
|
| 273 |
+
|
| 274 |
+
``magnitudes[..., f, t]`` contains the corresponding magnitudes.
|
| 275 |
+
|
| 276 |
+
Both ``pitches`` and ``magnitudes`` take value 0 at bins
|
| 277 |
+
of non-maximal magnitude.
|
| 278 |
+
|
| 279 |
+
Notes
|
| 280 |
+
-----
|
| 281 |
+
This function caches at level 30.
|
| 282 |
+
|
| 283 |
+
One of ``S`` or ``y`` must be provided.
|
| 284 |
+
If ``S`` is not given, it is computed from ``y`` using
|
| 285 |
+
the default parameters of `librosa.stft`.
|
| 286 |
+
|
| 287 |
+
Examples
|
| 288 |
+
--------
|
| 289 |
+
Computing pitches from a waveform input
|
| 290 |
+
|
| 291 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
| 292 |
+
>>> pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
|
| 293 |
+
|
| 294 |
+
Or from a spectrogram input
|
| 295 |
+
|
| 296 |
+
>>> S = np.abs(librosa.stft(y))
|
| 297 |
+
>>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr)
|
| 298 |
+
|
| 299 |
+
Or with an alternate reference value for pitch detection, where
|
| 300 |
+
values above the mean spectral energy in each frame are counted as pitches
|
| 301 |
+
|
| 302 |
+
>>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr, threshold=1,
|
| 303 |
+
... ref=np.mean)
|
| 304 |
+
|
| 305 |
+
"""
|
| 306 |
+
|
| 307 |
+
# Check that we received an audio time series or STFT
|
| 308 |
+
S, n_fft = _spectrogram(
|
| 309 |
+
y=y,
|
| 310 |
+
S=S,
|
| 311 |
+
n_fft=n_fft,
|
| 312 |
+
hop_length=hop_length,
|
| 313 |
+
win_length=win_length,
|
| 314 |
+
window=window,
|
| 315 |
+
center=center,
|
| 316 |
+
pad_mode=pad_mode,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
# Make sure we're dealing with magnitudes
|
| 320 |
+
S = np.abs(S)
|
| 321 |
+
|
| 322 |
+
# Truncate to feasible region
|
| 323 |
+
fmin = np.maximum(fmin, 0)
|
| 324 |
+
fmax = np.minimum(fmax, float(sr) / 2)
|
| 325 |
+
|
| 326 |
+
fft_freqs = convert.fft_frequencies(sr=sr, n_fft=n_fft)
|
| 327 |
+
|
| 328 |
+
# Do the parabolic interpolation everywhere,
|
| 329 |
+
# then figure out where the peaks are
|
| 330 |
+
# then restrict to the feasible range (fmin:fmax)
|
| 331 |
+
avg = np.gradient(S, axis=-2)
|
| 332 |
+
shift = _parabolic_interpolation(S, axis=-2)
|
| 333 |
+
# this will get us the interpolated peak value
|
| 334 |
+
dskew = 0.5 * avg * shift
|
| 335 |
+
|
| 336 |
+
# Pre-allocate output
|
| 337 |
+
pitches = np.zeros_like(S)
|
| 338 |
+
mags = np.zeros_like(S)
|
| 339 |
+
|
| 340 |
+
# Clip to the viable frequency range
|
| 341 |
+
freq_mask = (fmin <= fft_freqs) & (fft_freqs < fmax)
|
| 342 |
+
freq_mask = util.expand_to(freq_mask, ndim=S.ndim, axes=-2)
|
| 343 |
+
|
| 344 |
+
# Compute the column-wise local max of S after thresholding
|
| 345 |
+
# Find the argmax coordinates
|
| 346 |
+
if ref is None:
|
| 347 |
+
ref = np.max
|
| 348 |
+
|
| 349 |
+
if callable(ref):
|
| 350 |
+
ref_value = threshold * ref(S, axis=-2)
|
| 351 |
+
# Reinsert the frequency axis here, in case the callable doesn't
|
| 352 |
+
|
| 353 |
+
# support keepdims=True
|
| 354 |
+
ref_value = np.expand_dims(ref_value, -2)
|
| 355 |
+
else:
|
| 356 |
+
ref_value = np.abs(ref)
|
| 357 |
+
|
| 358 |
+
# Store pitch and magnitude
|
| 359 |
+
idx = np.nonzero(freq_mask & util.localmax(S * (S > ref_value), axis=-2))
|
| 360 |
+
pitches[idx] = (idx[-2] + shift[idx]) * float(sr) / n_fft
|
| 361 |
+
mags[idx] = S[idx] + dskew[idx]
|
| 362 |
+
|
| 363 |
+
return pitches, mags
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
def _cumulative_mean_normalized_difference(
|
| 367 |
+
y_frames: np.ndarray,
|
| 368 |
+
frame_length: int,
|
| 369 |
+
win_length: int,
|
| 370 |
+
min_period: int,
|
| 371 |
+
max_period: int,
|
| 372 |
+
) -> np.ndarray:
|
| 373 |
+
"""Cumulative mean normalized difference function (equation 8 in [#]_)
|
| 374 |
+
|
| 375 |
+
.. [#] De Cheveigné, Alain, and Hideki Kawahara.
|
| 376 |
+
"YIN, a fundamental frequency estimator for speech and music."
|
| 377 |
+
The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
|
| 378 |
+
|
| 379 |
+
Parameters
|
| 380 |
+
----------
|
| 381 |
+
y_frames : np.ndarray [shape=(frame_length, n_frames)]
|
| 382 |
+
framed audio time series.
|
| 383 |
+
frame_length : int > 0 [scalar]
|
| 384 |
+
length of the frames in samples.
|
| 385 |
+
win_length : int > 0 [scalar]
|
| 386 |
+
length of the window for calculating autocorrelation in samples.
|
| 387 |
+
min_period : int > 0 [scalar]
|
| 388 |
+
minimum period.
|
| 389 |
+
max_period : int > 0 [scalar]
|
| 390 |
+
maximum period.
|
| 391 |
+
|
| 392 |
+
Returns
|
| 393 |
+
-------
|
| 394 |
+
yin_frames : np.ndarray [shape=(max_period-min_period+1,n_frames)]
|
| 395 |
+
Cumulative mean normalized difference function for each frame.
|
| 396 |
+
"""
|
| 397 |
+
# Autocorrelation.
|
| 398 |
+
a = np.fft.rfft(y_frames, frame_length, axis=-2)
|
| 399 |
+
b = np.fft.rfft(y_frames[..., win_length:0:-1, :], frame_length, axis=-2)
|
| 400 |
+
acf_frames = np.fft.irfft(a * b, frame_length, axis=-2)[..., win_length:, :]
|
| 401 |
+
acf_frames[np.abs(acf_frames) < 1e-6] = 0
|
| 402 |
+
|
| 403 |
+
# Energy terms.
|
| 404 |
+
energy_frames = np.cumsum(y_frames**2, axis=-2)
|
| 405 |
+
energy_frames = (
|
| 406 |
+
energy_frames[..., win_length:, :] - energy_frames[..., :-win_length, :]
|
| 407 |
+
)
|
| 408 |
+
energy_frames[np.abs(energy_frames) < 1e-6] = 0
|
| 409 |
+
|
| 410 |
+
# Difference function.
|
| 411 |
+
yin_frames = energy_frames[..., :1, :] + energy_frames - 2 * acf_frames
|
| 412 |
+
|
| 413 |
+
# Cumulative mean normalized difference function.
|
| 414 |
+
yin_numerator = yin_frames[..., min_period : max_period + 1, :]
|
| 415 |
+
# broadcast this shape to have leading ones
|
| 416 |
+
tau_range = util.expand_to(
|
| 417 |
+
np.arange(1, max_period + 1), ndim=yin_frames.ndim, axes=-2
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
cumulative_mean = (
|
| 421 |
+
np.cumsum(yin_frames[..., 1 : max_period + 1, :], axis=-2) / tau_range
|
| 422 |
+
)
|
| 423 |
+
yin_denominator = cumulative_mean[..., min_period - 1 : max_period, :]
|
| 424 |
+
yin_frames: np.ndarray = yin_numerator / (
|
| 425 |
+
yin_denominator + util.tiny(yin_denominator)
|
| 426 |
+
)
|
| 427 |
+
return yin_frames
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
@numba.stencil # type: ignore
|
| 431 |
+
def _pi_stencil(x: np.ndarray) -> np.ndarray:
|
| 432 |
+
"""Stencil to compute local parabolic interpolation"""
|
| 433 |
+
|
| 434 |
+
a = x[1] + x[-1] - 2 * x[0]
|
| 435 |
+
b = (x[1] - x[-1]) / 2
|
| 436 |
+
|
| 437 |
+
if np.abs(b) >= np.abs(a):
|
| 438 |
+
# If this happens, we'll shift by more than 1 bin
|
| 439 |
+
# Suppressing types because mypy has no idea about stencils
|
| 440 |
+
return 0 # type: ignore
|
| 441 |
+
|
| 442 |
+
return -b / a # type: ignore
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
@numba.guvectorize(
|
| 446 |
+
["void(float32[:], float32[:])", "void(float64[:], float64[:])"],
|
| 447 |
+
"(n)->(n)",
|
| 448 |
+
cache=False,
|
| 449 |
+
nopython=True,
|
| 450 |
+
) # type: ignore
|
| 451 |
+
def _pi_wrapper(x: np.ndarray, y: np.ndarray) -> None: # pragma: no cover
|
| 452 |
+
"""Vectorized wrapper for the parabolic interpolation stencil"""
|
| 453 |
+
y[:] = _pi_stencil(x)
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
def _parabolic_interpolation(x: np.ndarray, *, axis: int = -2) -> np.ndarray:
|
| 457 |
+
"""Piecewise parabolic interpolation for yin and pyin.
|
| 458 |
+
|
| 459 |
+
Parameters
|
| 460 |
+
----------
|
| 461 |
+
x : np.ndarray
|
| 462 |
+
array to interpolate
|
| 463 |
+
axis : int
|
| 464 |
+
axis along which to interpolate
|
| 465 |
+
|
| 466 |
+
Returns
|
| 467 |
+
-------
|
| 468 |
+
parabolic_shifts : np.ndarray [shape=x.shape]
|
| 469 |
+
position of the parabola optima (relative to bin indices)
|
| 470 |
+
|
| 471 |
+
Note: the shift at bin `n` is determined as 0 if the estimated
|
| 472 |
+
optimum is outside the range `[n-1, n+1]`.
|
| 473 |
+
"""
|
| 474 |
+
# Rotate the target axis to the end
|
| 475 |
+
xi = x.swapaxes(-1, axis)
|
| 476 |
+
|
| 477 |
+
# Allocate the output array and rotate target axis
|
| 478 |
+
shifts = np.empty_like(x)
|
| 479 |
+
shiftsi = shifts.swapaxes(-1, axis)
|
| 480 |
+
|
| 481 |
+
# Call the vectorized stencil
|
| 482 |
+
_pi_wrapper(xi, shiftsi)
|
| 483 |
+
|
| 484 |
+
# Handle the edge condition not covered by the stencil
|
| 485 |
+
shiftsi[..., -1] = 0
|
| 486 |
+
shiftsi[..., 0] = 0
|
| 487 |
+
|
| 488 |
+
return shifts
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def yin(
|
| 492 |
+
y: np.ndarray,
|
| 493 |
+
*,
|
| 494 |
+
fmin: float,
|
| 495 |
+
fmax: float,
|
| 496 |
+
sr: float = 22050,
|
| 497 |
+
frame_length: int = 2048,
|
| 498 |
+
win_length: Optional[int] = None,
|
| 499 |
+
hop_length: Optional[int] = None,
|
| 500 |
+
trough_threshold: float = 0.1,
|
| 501 |
+
center: bool = True,
|
| 502 |
+
pad_mode: _PadMode = "constant",
|
| 503 |
+
) -> np.ndarray:
|
| 504 |
+
"""Fundamental frequency (F0) estimation using the YIN algorithm.
|
| 505 |
+
|
| 506 |
+
YIN is an autocorrelation based method for fundamental frequency estimation [#]_.
|
| 507 |
+
First, a normalized difference function is computed over short (overlapping) frames of audio.
|
| 508 |
+
Next, the first minimum in the difference function below ``trough_threshold`` is selected as
|
| 509 |
+
an estimate of the signal's period.
|
| 510 |
+
Finally, the estimated period is refined using parabolic interpolation before converting
|
| 511 |
+
into the corresponding frequency.
|
| 512 |
+
|
| 513 |
+
.. [#] De Cheveigné, Alain, and Hideki Kawahara.
|
| 514 |
+
"YIN, a fundamental frequency estimator for speech and music."
|
| 515 |
+
The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
|
| 516 |
+
|
| 517 |
+
Parameters
|
| 518 |
+
----------
|
| 519 |
+
y : np.ndarray [shape=(..., n)]
|
| 520 |
+
audio time series. Multi-channel is supported..
|
| 521 |
+
fmin : number > 0 [scalar]
|
| 522 |
+
minimum frequency in Hertz.
|
| 523 |
+
The recommended minimum is ``librosa.note_to_hz('C2')`` (~65 Hz)
|
| 524 |
+
though lower values may be feasible.
|
| 525 |
+
fmax : number > 0 [scalar]
|
| 526 |
+
maximum frequency in Hertz.
|
| 527 |
+
The recommended maximum is ``librosa.note_to_hz('C7')`` (~2093 Hz)
|
| 528 |
+
though higher values may be feasible.
|
| 529 |
+
sr : number > 0 [scalar]
|
| 530 |
+
sampling rate of ``y`` in Hertz.
|
| 531 |
+
frame_length : int > 0 [scalar]
|
| 532 |
+
length of the frames in samples.
|
| 533 |
+
By default, ``frame_length=2048`` corresponds to a time scale of about 93 ms at
|
| 534 |
+
a sampling rate of 22050 Hz.
|
| 535 |
+
win_length : None or int > 0 [scalar]
|
| 536 |
+
length of the window for calculating autocorrelation in samples.
|
| 537 |
+
If ``None``, defaults to ``frame_length // 2``
|
| 538 |
+
hop_length : None or int > 0 [scalar]
|
| 539 |
+
number of audio samples between adjacent YIN predictions.
|
| 540 |
+
If ``None``, defaults to ``frame_length // 4``.
|
| 541 |
+
trough_threshold : number > 0 [scalar]
|
| 542 |
+
absolute threshold for peak estimation.
|
| 543 |
+
center : boolean
|
| 544 |
+
If ``True``, the signal `y` is padded so that frame
|
| 545 |
+
``D[:, t]`` is centered at `y[t * hop_length]`.
|
| 546 |
+
If ``False``, then ``D[:, t]`` begins at ``y[t * hop_length]``.
|
| 547 |
+
Defaults to ``True``, which simplifies the alignment of ``D`` onto a
|
| 548 |
+
time grid by means of ``librosa.core.frames_to_samples``.
|
| 549 |
+
pad_mode : string or function
|
| 550 |
+
If ``center=True``, this argument is passed to ``np.pad`` for padding
|
| 551 |
+
the edges of the signal ``y``. By default (``pad_mode="constant"``),
|
| 552 |
+
``y`` is padded on both sides with zeros.
|
| 553 |
+
If ``center=False``, this argument is ignored.
|
| 554 |
+
.. see also:: `np.pad`
|
| 555 |
+
|
| 556 |
+
Returns
|
| 557 |
+
-------
|
| 558 |
+
f0: np.ndarray [shape=(..., n_frames)]
|
| 559 |
+
time series of fundamental frequencies in Hertz.
|
| 560 |
+
|
| 561 |
+
If multi-channel input is provided, f0 curves are estimated separately for each channel.
|
| 562 |
+
|
| 563 |
+
See Also
|
| 564 |
+
--------
|
| 565 |
+
librosa.pyin :
|
| 566 |
+
Fundamental frequency (F0) estimation using probabilistic YIN (pYIN).
|
| 567 |
+
|
| 568 |
+
Examples
|
| 569 |
+
--------
|
| 570 |
+
Computing a fundamental frequency (F0) curve from an audio input
|
| 571 |
+
|
| 572 |
+
>>> y = librosa.chirp(fmin=440, fmax=880, duration=5.0)
|
| 573 |
+
>>> librosa.yin(y, fmin=440, fmax=880)
|
| 574 |
+
array([442.66354675, 441.95299983, 441.58010963, ...,
|
| 575 |
+
871.161732 , 873.99001454, 877.04297681])
|
| 576 |
+
"""
|
| 577 |
+
|
| 578 |
+
if fmin is None or fmax is None:
|
| 579 |
+
raise ParameterError('both "fmin" and "fmax" must be provided')
|
| 580 |
+
|
| 581 |
+
# Set the default window length if it is not already specified.
|
| 582 |
+
if win_length is None:
|
| 583 |
+
win_length = frame_length // 2
|
| 584 |
+
|
| 585 |
+
if win_length >= frame_length:
|
| 586 |
+
raise ParameterError(
|
| 587 |
+
f"win_length={win_length} cannot exceed given frame_length={frame_length}"
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
# Set the default hop if it is not already specified.
|
| 591 |
+
if hop_length is None:
|
| 592 |
+
hop_length = frame_length // 4
|
| 593 |
+
|
| 594 |
+
# Check that audio is valid.
|
| 595 |
+
util.valid_audio(y, mono=False)
|
| 596 |
+
|
| 597 |
+
# Pad the time series so that frames are centered
|
| 598 |
+
if center:
|
| 599 |
+
padding = [(0, 0)] * y.ndim
|
| 600 |
+
padding[-1] = (frame_length // 2, frame_length // 2)
|
| 601 |
+
y = np.pad(y, padding, mode=pad_mode)
|
| 602 |
+
|
| 603 |
+
# Frame audio.
|
| 604 |
+
y_frames = util.frame(y, frame_length=frame_length, hop_length=hop_length)
|
| 605 |
+
|
| 606 |
+
# Calculate minimum and maximum periods
|
| 607 |
+
min_period = max(int(np.floor(sr / fmax)), 1)
|
| 608 |
+
max_period = min(int(np.ceil(sr / fmin)), frame_length - win_length - 1)
|
| 609 |
+
|
| 610 |
+
# Calculate cumulative mean normalized difference function.
|
| 611 |
+
yin_frames = _cumulative_mean_normalized_difference(
|
| 612 |
+
y_frames, frame_length, win_length, min_period, max_period
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
# Parabolic interpolation.
|
| 616 |
+
parabolic_shifts = _parabolic_interpolation(yin_frames)
|
| 617 |
+
|
| 618 |
+
# Find local minima.
|
| 619 |
+
is_trough = util.localmin(yin_frames, axis=-2)
|
| 620 |
+
is_trough[..., 0, :] = yin_frames[..., 0, :] < yin_frames[..., 1, :]
|
| 621 |
+
|
| 622 |
+
# Find minima below peak threshold.
|
| 623 |
+
is_threshold_trough = np.logical_and(is_trough, yin_frames < trough_threshold)
|
| 624 |
+
|
| 625 |
+
# Absolute threshold.
|
| 626 |
+
# "The solution we propose is to set an absolute threshold and choose the
|
| 627 |
+
# smallest value of tau that gives a minimum of d' deeper than
|
| 628 |
+
# this threshold. If none is found, the global minimum is chosen instead."
|
| 629 |
+
target_shape = list(yin_frames.shape)
|
| 630 |
+
target_shape[-2] = 1
|
| 631 |
+
|
| 632 |
+
global_min = np.argmin(yin_frames, axis=-2)
|
| 633 |
+
yin_period = np.argmax(is_threshold_trough, axis=-2)
|
| 634 |
+
|
| 635 |
+
global_min = global_min.reshape(target_shape)
|
| 636 |
+
yin_period = yin_period.reshape(target_shape)
|
| 637 |
+
|
| 638 |
+
no_trough_below_threshold = np.all(~is_threshold_trough, axis=-2, keepdims=True)
|
| 639 |
+
yin_period[no_trough_below_threshold] = global_min[no_trough_below_threshold]
|
| 640 |
+
|
| 641 |
+
# Refine peak by parabolic interpolation.
|
| 642 |
+
|
| 643 |
+
yin_period = (
|
| 644 |
+
min_period
|
| 645 |
+
+ yin_period
|
| 646 |
+
+ np.take_along_axis(parabolic_shifts, yin_period, axis=-2)
|
| 647 |
+
)[..., 0, :]
|
| 648 |
+
|
| 649 |
+
# Convert period to fundamental frequency.
|
| 650 |
+
f0: np.ndarray = sr / yin_period
|
| 651 |
+
return f0
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
def pyin(
|
| 655 |
+
y: np.ndarray,
|
| 656 |
+
*,
|
| 657 |
+
fmin: float,
|
| 658 |
+
fmax: float,
|
| 659 |
+
sr: float = 22050,
|
| 660 |
+
frame_length: int = 2048,
|
| 661 |
+
win_length: Optional[int] = None,
|
| 662 |
+
hop_length: Optional[int] = None,
|
| 663 |
+
n_thresholds: int = 100,
|
| 664 |
+
beta_parameters: Tuple[float, float] = (2, 18),
|
| 665 |
+
boltzmann_parameter: float = 2,
|
| 666 |
+
resolution: float = 0.1,
|
| 667 |
+
max_transition_rate: float = 35.92,
|
| 668 |
+
switch_prob: float = 0.01,
|
| 669 |
+
no_trough_prob: float = 0.01,
|
| 670 |
+
fill_na: Optional[float] = np.nan,
|
| 671 |
+
center: bool = True,
|
| 672 |
+
pad_mode: _PadMode = "constant",
|
| 673 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 674 |
+
"""Fundamental frequency (F0) estimation using probabilistic YIN (pYIN).
|
| 675 |
+
|
| 676 |
+
pYIN [#]_ is a modificatin of the YIN algorithm [#]_ for fundamental frequency (F0) estimation.
|
| 677 |
+
In the first step of pYIN, F0 candidates and their probabilities are computed using the YIN algorithm.
|
| 678 |
+
In the second step, Viterbi decoding is used to estimate the most likely F0 sequence and voicing flags.
|
| 679 |
+
|
| 680 |
+
.. [#] Mauch, Matthias, and Simon Dixon.
|
| 681 |
+
"pYIN: A fundamental frequency estimator using probabilistic threshold distributions."
|
| 682 |
+
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014.
|
| 683 |
+
|
| 684 |
+
.. [#] De Cheveigné, Alain, and Hideki Kawahara.
|
| 685 |
+
"YIN, a fundamental frequency estimator for speech and music."
|
| 686 |
+
The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
|
| 687 |
+
|
| 688 |
+
Parameters
|
| 689 |
+
----------
|
| 690 |
+
y : np.ndarray [shape=(..., n)]
|
| 691 |
+
audio time series. Multi-channel is supported.
|
| 692 |
+
fmin : number > 0 [scalar]
|
| 693 |
+
minimum frequency in Hertz.
|
| 694 |
+
The recommended minimum is ``librosa.note_to_hz('C2')`` (~65 Hz)
|
| 695 |
+
though lower values may be feasible.
|
| 696 |
+
fmax : number > 0 [scalar]
|
| 697 |
+
maximum frequency in Hertz.
|
| 698 |
+
The recommended maximum is ``librosa.note_to_hz('C7')`` (~2093 Hz)
|
| 699 |
+
though higher values may be feasible.
|
| 700 |
+
sr : number > 0 [scalar]
|
| 701 |
+
sampling rate of ``y`` in Hertz.
|
| 702 |
+
frame_length : int > 0 [scalar]
|
| 703 |
+
length of the frames in samples.
|
| 704 |
+
By default, ``frame_length=2048`` corresponds to a time scale of about 93 ms at
|
| 705 |
+
a sampling rate of 22050 Hz.
|
| 706 |
+
win_length : None or int > 0 [scalar]
|
| 707 |
+
length of the window for calculating autocorrelation in samples.
|
| 708 |
+
If ``None``, defaults to ``frame_length // 2``
|
| 709 |
+
hop_length : None or int > 0 [scalar]
|
| 710 |
+
number of audio samples between adjacent pYIN predictions.
|
| 711 |
+
If ``None``, defaults to ``frame_length // 4``.
|
| 712 |
+
n_thresholds : int > 0 [scalar]
|
| 713 |
+
number of thresholds for peak estimation.
|
| 714 |
+
beta_parameters : tuple
|
| 715 |
+
shape parameters for the beta distribution prior over thresholds.
|
| 716 |
+
boltzmann_parameter : number > 0 [scalar]
|
| 717 |
+
shape parameter for the Boltzmann distribution prior over troughs.
|
| 718 |
+
Larger values will assign more mass to smaller periods.
|
| 719 |
+
resolution : float in `(0, 1)`
|
| 720 |
+
Resolution of the pitch bins.
|
| 721 |
+
0.01 corresponds to cents.
|
| 722 |
+
max_transition_rate : float > 0
|
| 723 |
+
maximum pitch transition rate in octaves per second.
|
| 724 |
+
switch_prob : float in ``(0, 1)``
|
| 725 |
+
probability of switching from voiced to unvoiced or vice versa.
|
| 726 |
+
no_trough_prob : float in ``(0, 1)``
|
| 727 |
+
maximum probability to add to global minimum if no trough is below threshold.
|
| 728 |
+
fill_na : None, float, or ``np.nan``
|
| 729 |
+
default value for unvoiced frames of ``f0``.
|
| 730 |
+
If ``None``, the unvoiced frames will contain a best guess value.
|
| 731 |
+
center : boolean
|
| 732 |
+
If ``True``, the signal ``y`` is padded so that frame
|
| 733 |
+
``D[:, t]`` is centered at ``y[t * hop_length]``.
|
| 734 |
+
If ``False``, then ``D[:, t]`` begins at ``y[t * hop_length]``.
|
| 735 |
+
Defaults to ``True``, which simplifies the alignment of ``D`` onto a
|
| 736 |
+
time grid by means of ``librosa.core.frames_to_samples``.
|
| 737 |
+
pad_mode : string or function
|
| 738 |
+
If ``center=True``, this argument is passed to ``np.pad`` for padding
|
| 739 |
+
the edges of the signal ``y``. By default (``pad_mode="constant"``),
|
| 740 |
+
``y`` is padded on both sides with zeros.
|
| 741 |
+
If ``center=False``, this argument is ignored.
|
| 742 |
+
.. see also:: `np.pad`
|
| 743 |
+
|
| 744 |
+
Returns
|
| 745 |
+
-------
|
| 746 |
+
f0: np.ndarray [shape=(..., n_frames)]
|
| 747 |
+
time series of fundamental frequencies in Hertz.
|
| 748 |
+
voiced_flag: np.ndarray [shape=(..., n_frames)]
|
| 749 |
+
time series containing boolean flags indicating whether a frame is voiced or not.
|
| 750 |
+
voiced_prob: np.ndarray [shape=(..., n_frames)]
|
| 751 |
+
time series containing the probability that a frame is voiced.
|
| 752 |
+
.. note:: If multi-channel input is provided, f0 and voicing are estimated separately for each channel.
|
| 753 |
+
|
| 754 |
+
See Also
|
| 755 |
+
--------
|
| 756 |
+
librosa.yin :
|
| 757 |
+
Fundamental frequency (F0) estimation using the YIN algorithm.
|
| 758 |
+
|
| 759 |
+
Examples
|
| 760 |
+
--------
|
| 761 |
+
Computing a fundamental frequency (F0) curve from an audio input
|
| 762 |
+
|
| 763 |
+
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
| 764 |
+
>>> f0, voiced_flag, voiced_probs = librosa.pyin(y,
|
| 765 |
+
... fmin=librosa.note_to_hz('C2'),
|
| 766 |
+
... fmax=librosa.note_to_hz('C7'))
|
| 767 |
+
>>> times = librosa.times_like(f0)
|
| 768 |
+
|
| 769 |
+
Overlay F0 over a spectrogram
|
| 770 |
+
|
| 771 |
+
>>> import matplotlib.pyplot as plt
|
| 772 |
+
>>> D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
|
| 773 |
+
>>> fig, ax = plt.subplots()
|
| 774 |
+
>>> img = librosa.display.specshow(D, x_axis='time', y_axis='log', ax=ax)
|
| 775 |
+
>>> ax.set(title='pYIN fundamental frequency estimation')
|
| 776 |
+
>>> fig.colorbar(img, ax=ax, format="%+2.f dB")
|
| 777 |
+
>>> ax.plot(times, f0, label='f0', color='cyan', linewidth=3)
|
| 778 |
+
>>> ax.legend(loc='upper right')
|
| 779 |
+
"""
|
| 780 |
+
|
| 781 |
+
if fmin is None or fmax is None:
|
| 782 |
+
raise ParameterError('both "fmin" and "fmax" must be provided')
|
| 783 |
+
|
| 784 |
+
# Set the default window length if it is not already specified.
|
| 785 |
+
if win_length is None:
|
| 786 |
+
win_length = frame_length // 2
|
| 787 |
+
|
| 788 |
+
if win_length >= frame_length:
|
| 789 |
+
raise ParameterError(
|
| 790 |
+
f"win_length={win_length} cannot exceed given frame_length={frame_length}"
|
| 791 |
+
)
|
| 792 |
+
|
| 793 |
+
# Set the default hop if it is not already specified.
|
| 794 |
+
if hop_length is None:
|
| 795 |
+
hop_length = frame_length // 4
|
| 796 |
+
|
| 797 |
+
# Check that audio is valid.
|
| 798 |
+
util.valid_audio(y, mono=False)
|
| 799 |
+
|
| 800 |
+
# Pad the time series so that frames are centered
|
| 801 |
+
if center:
|
| 802 |
+
padding = [(0, 0) for _ in y.shape]
|
| 803 |
+
padding[-1] = (frame_length // 2, frame_length // 2)
|
| 804 |
+
y = np.pad(y, padding, mode=pad_mode)
|
| 805 |
+
|
| 806 |
+
# Frame audio.
|
| 807 |
+
y_frames = util.frame(y, frame_length=frame_length, hop_length=hop_length)
|
| 808 |
+
|
| 809 |
+
# Calculate minimum and maximum periods
|
| 810 |
+
min_period = max(int(np.floor(sr / fmax)), 1)
|
| 811 |
+
max_period = min(int(np.ceil(sr / fmin)), frame_length - win_length - 1)
|
| 812 |
+
|
| 813 |
+
# Calculate cumulative mean normalized difference function.
|
| 814 |
+
yin_frames = _cumulative_mean_normalized_difference(
|
| 815 |
+
y_frames, frame_length, win_length, min_period, max_period
|
| 816 |
+
)
|
| 817 |
+
|
| 818 |
+
# Parabolic interpolation.
|
| 819 |
+
parabolic_shifts = _parabolic_interpolation(yin_frames)
|
| 820 |
+
|
| 821 |
+
# Find Yin candidates and probabilities.
|
| 822 |
+
# The implementation here follows the official pYIN software which
|
| 823 |
+
# differs from the method described in the paper.
|
| 824 |
+
# 1. Define the prior over the thresholds.
|
| 825 |
+
thresholds = np.linspace(0, 1, n_thresholds + 1)
|
| 826 |
+
beta_cdf = scipy.stats.beta.cdf(thresholds, beta_parameters[0], beta_parameters[1])
|
| 827 |
+
beta_probs = np.diff(beta_cdf)
|
| 828 |
+
|
| 829 |
+
n_bins_per_semitone = int(np.ceil(1.0 / resolution))
|
| 830 |
+
n_pitch_bins = int(np.floor(12 * n_bins_per_semitone * np.log2(fmax / fmin))) + 1
|
| 831 |
+
|
| 832 |
+
def _helper(a, b):
|
| 833 |
+
return __pyin_helper(
|
| 834 |
+
a,
|
| 835 |
+
b,
|
| 836 |
+
sr,
|
| 837 |
+
thresholds,
|
| 838 |
+
boltzmann_parameter,
|
| 839 |
+
beta_probs,
|
| 840 |
+
no_trough_prob,
|
| 841 |
+
min_period,
|
| 842 |
+
fmin,
|
| 843 |
+
n_pitch_bins,
|
| 844 |
+
n_bins_per_semitone,
|
| 845 |
+
)
|
| 846 |
+
|
| 847 |
+
helper = np.vectorize(_helper, signature="(f,t),(k,t)->(1,d,t),(j,t)")
|
| 848 |
+
observation_probs, voiced_prob = helper(yin_frames, parabolic_shifts)
|
| 849 |
+
|
| 850 |
+
# Construct transition matrix.
|
| 851 |
+
max_semitones_per_frame = round(max_transition_rate * 12 * hop_length / sr)
|
| 852 |
+
transition_width = max_semitones_per_frame * n_bins_per_semitone + 1
|
| 853 |
+
# Construct the within voicing transition probabilities
|
| 854 |
+
transition = sequence.transition_local(
|
| 855 |
+
n_pitch_bins, transition_width, window="triangle", wrap=False
|
| 856 |
+
)
|
| 857 |
+
|
| 858 |
+
# Include across voicing transition probabilities
|
| 859 |
+
t_switch = sequence.transition_loop(2, 1 - switch_prob)
|
| 860 |
+
transition = np.kron(t_switch, transition)
|
| 861 |
+
|
| 862 |
+
p_init = np.zeros(2 * n_pitch_bins)
|
| 863 |
+
p_init[n_pitch_bins:] = 1 / n_pitch_bins
|
| 864 |
+
|
| 865 |
+
states = sequence.viterbi(observation_probs, transition, p_init=p_init)
|
| 866 |
+
|
| 867 |
+
# Find f0 corresponding to each decoded pitch bin.
|
| 868 |
+
freqs = fmin * 2 ** (np.arange(n_pitch_bins) / (12 * n_bins_per_semitone))
|
| 869 |
+
f0 = freqs[states % n_pitch_bins]
|
| 870 |
+
voiced_flag = states < n_pitch_bins
|
| 871 |
+
|
| 872 |
+
if fill_na is not None:
|
| 873 |
+
f0[~voiced_flag] = fill_na
|
| 874 |
+
|
| 875 |
+
return f0[..., 0, :], voiced_flag[..., 0, :], voiced_prob[..., 0, :]
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
def __pyin_helper(
|
| 879 |
+
yin_frames,
|
| 880 |
+
parabolic_shifts,
|
| 881 |
+
sr,
|
| 882 |
+
thresholds,
|
| 883 |
+
boltzmann_parameter,
|
| 884 |
+
beta_probs,
|
| 885 |
+
no_trough_prob,
|
| 886 |
+
min_period,
|
| 887 |
+
fmin,
|
| 888 |
+
n_pitch_bins,
|
| 889 |
+
n_bins_per_semitone,
|
| 890 |
+
):
|
| 891 |
+
yin_probs = np.zeros_like(yin_frames)
|
| 892 |
+
|
| 893 |
+
for i, yin_frame in enumerate(yin_frames.T):
|
| 894 |
+
# 2. For each frame find the troughs.
|
| 895 |
+
is_trough = util.localmin(yin_frame)
|
| 896 |
+
|
| 897 |
+
is_trough[0] = yin_frame[0] < yin_frame[1]
|
| 898 |
+
(trough_index,) = np.nonzero(is_trough)
|
| 899 |
+
|
| 900 |
+
if len(trough_index) == 0:
|
| 901 |
+
continue
|
| 902 |
+
|
| 903 |
+
# 3. Find the troughs below each threshold.
|
| 904 |
+
# these are the local minima of the frame, could get them directly without the trough index
|
| 905 |
+
trough_heights = yin_frame[trough_index]
|
| 906 |
+
trough_thresholds = np.less.outer(trough_heights, thresholds[1:])
|
| 907 |
+
|
| 908 |
+
# 4. Define the prior over the troughs.
|
| 909 |
+
# Smaller periods are weighted more.
|
| 910 |
+
trough_positions = np.cumsum(trough_thresholds, axis=0) - 1
|
| 911 |
+
n_troughs = np.count_nonzero(trough_thresholds, axis=0)
|
| 912 |
+
|
| 913 |
+
trough_prior = scipy.stats.boltzmann.pmf(
|
| 914 |
+
trough_positions, boltzmann_parameter, n_troughs
|
| 915 |
+
)
|
| 916 |
+
|
| 917 |
+
trough_prior[~trough_thresholds] = 0
|
| 918 |
+
|
| 919 |
+
# 5. For each threshold add probability to global minimum if no trough is below threshold,
|
| 920 |
+
# else add probability to each trough below threshold biased by prior.
|
| 921 |
+
|
| 922 |
+
probs = trough_prior.dot(beta_probs)
|
| 923 |
+
|
| 924 |
+
global_min = np.argmin(trough_heights)
|
| 925 |
+
n_thresholds_below_min = np.count_nonzero(~trough_thresholds[global_min, :])
|
| 926 |
+
probs[global_min] += no_trough_prob * np.sum(
|
| 927 |
+
beta_probs[:n_thresholds_below_min]
|
| 928 |
+
)
|
| 929 |
+
|
| 930 |
+
yin_probs[trough_index, i] = probs
|
| 931 |
+
|
| 932 |
+
yin_period, frame_index = np.nonzero(yin_probs)
|
| 933 |
+
|
| 934 |
+
# Refine peak by parabolic interpolation.
|
| 935 |
+
period_candidates = min_period + yin_period
|
| 936 |
+
period_candidates = period_candidates + parabolic_shifts[yin_period, frame_index]
|
| 937 |
+
f0_candidates = sr / period_candidates
|
| 938 |
+
|
| 939 |
+
# Find pitch bin corresponding to each f0 candidate.
|
| 940 |
+
bin_index = 12 * n_bins_per_semitone * np.log2(f0_candidates / fmin)
|
| 941 |
+
bin_index = np.clip(np.round(bin_index), 0, n_pitch_bins).astype(int)
|
| 942 |
+
|
| 943 |
+
# Observation probabilities.
|
| 944 |
+
observation_probs = np.zeros((2 * n_pitch_bins, yin_frames.shape[1]))
|
| 945 |
+
observation_probs[bin_index, frame_index] = yin_probs[yin_period, frame_index]
|
| 946 |
+
|
| 947 |
+
voiced_prob = np.clip(
|
| 948 |
+
np.sum(observation_probs[:n_pitch_bins, :], axis=0, keepdims=True), 0, 1
|
| 949 |
+
)
|
| 950 |
+
observation_probs[n_pitch_bins:, :] = (1 - voiced_prob) / n_pitch_bins
|
| 951 |
+
|
| 952 |
+
return observation_probs[np.newaxis], voiced_prob
|
utils/utils.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
#!/usr/bin/env python
|
| 4 |
# -*- coding: utf-8 -*-
|
| 5 |
"""Utility functions"""
|
|
@@ -1071,7 +1069,7 @@ def _localmin_sten(x): # pragma: no cover
|
|
| 1071 |
"void(float64[:], bool_[:])",
|
| 1072 |
],
|
| 1073 |
"(n)->(n)",
|
| 1074 |
-
cache=
|
| 1075 |
nopython=True,
|
| 1076 |
)
|
| 1077 |
def _localmax(x, y): # pragma: no cover
|
|
@@ -1088,7 +1086,7 @@ def _localmax(x, y): # pragma: no cover
|
|
| 1088 |
"void(float64[:], bool_[:])",
|
| 1089 |
],
|
| 1090 |
"(n)->(n)",
|
| 1091 |
-
cache=
|
| 1092 |
nopython=True,
|
| 1093 |
)
|
| 1094 |
def _localmin(x, y): # pragma: no cover
|
|
@@ -2472,7 +2470,7 @@ def is_unique(data: np.ndarray, *, axis: int = -1) -> np.ndarray:
|
|
| 2472 |
|
| 2473 |
|
| 2474 |
@numba.vectorize(
|
| 2475 |
-
["float32(complex64)", "float64(complex128)"], nopython=True, cache=
|
| 2476 |
) # type: ignore
|
| 2477 |
def _cabs2(x: _ComplexLike_co) -> _FloatLike_co: # pragma: no cover
|
| 2478 |
"""Helper function for efficiently computing abs2 on complex inputs"""
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python
|
| 2 |
# -*- coding: utf-8 -*-
|
| 3 |
"""Utility functions"""
|
|
|
|
| 1069 |
"void(float64[:], bool_[:])",
|
| 1070 |
],
|
| 1071 |
"(n)->(n)",
|
| 1072 |
+
cache=False,
|
| 1073 |
nopython=True,
|
| 1074 |
)
|
| 1075 |
def _localmax(x, y): # pragma: no cover
|
|
|
|
| 1086 |
"void(float64[:], bool_[:])",
|
| 1087 |
],
|
| 1088 |
"(n)->(n)",
|
| 1089 |
+
cache=False,
|
| 1090 |
nopython=True,
|
| 1091 |
)
|
| 1092 |
def _localmin(x, y): # pragma: no cover
|
|
|
|
| 2470 |
|
| 2471 |
|
| 2472 |
@numba.vectorize(
|
| 2473 |
+
["float32(complex64)", "float64(complex128)"], nopython=True, cache=False, identity=0
|
| 2474 |
) # type: ignore
|
| 2475 |
def _cabs2(x: _ComplexLike_co) -> _FloatLike_co: # pragma: no cover
|
| 2476 |
"""Helper function for efficiently computing abs2 on complex inputs"""
|