cyber_llm / app.py
unit731's picture
Upload folder using huggingface_hub
2275ca2 verified
"""
Cyber-LLM: Advanced Cybersecurity AI Operations Center
Clean minimal version for HuggingFace Spaces deployment
"""
from fastapi import FastAPI, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from typing import Dict, List, Any
import os
import json
from datetime import datetime
# Create FastAPI app
app = FastAPI(
title="Cyber-LLM Operations Center",
description="Advanced Cybersecurity AI Platform",
version="2.0.0"
)
# Data Models
class TargetAnalysisRequest(BaseModel):
target: str
analysis_type: str = "comprehensive"
class ThreatResponse(BaseModel):
threat_level: str
confidence: float
analysis: Dict[str, Any]
# Threat Intelligence Database
THREAT_INTELLIGENCE = {
"apt_groups": {
"APT29": {"name": "Cozy Bear", "origin": "Russia", "active": True},
"APT28": {"name": "Fancy Bear", "origin": "Russia", "active": True},
"Lazarus": {"name": "Hidden Cobra", "origin": "North Korea", "active": True}
},
"iocs": ["malicious-domain.com", "[email protected]", "192.168.1.100"]
}
@app.get("/", response_class=HTMLResponse)
async def dashboard():
"""Main cybersecurity operations dashboard"""
apt_count = len(THREAT_INTELLIGENCE['apt_groups'])
ioc_count = len(THREAT_INTELLIGENCE['iocs'])
html_content = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>πŸ›‘οΈ Cyber-LLM Operations Center</title>
<style>
* { margin: 0; padding: 0; box-sizing: border-box; }
body {
font-family: 'Courier New', monospace;
background: linear-gradient(135deg, #0a0a0a, #1a1a2e);
color: #00ff00;
min-height: 100vh;
padding: 20px;
}
.container {
max-width: 1200px;
margin: 0 auto;
background: rgba(0, 0, 0, 0.8);
border: 2px solid #00ff00;
border-radius: 15px;
padding: 30px;
}
h1 {
color: #ff0040;
text-align: center;
margin-bottom: 30px;
font-size: 2.5em;
text-shadow: 0 0 10px #ff0040;
}
.stats-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 20px;
margin-bottom: 30px;
}
.stat-card {
background: rgba(0, 255, 0, 0.1);
border: 1px solid #00ff00;
border-radius: 10px;
padding: 20px;
text-align: center;
}
.stat-value { color: #00ffff; font-size: 2em; font-weight: bold; }
.section {
background: rgba(255, 0, 64, 0.1);
border: 1px solid #ff0040;
border-radius: 10px;
padding: 20px;
margin: 20px 0;
}
.section h2 { color: #ff0040; margin-bottom: 15px; }
.threat-list { list-style: none; }
.threat-list li {
background: rgba(0, 255, 255, 0.1);
margin: 5px 0;
padding: 10px;
border-radius: 5px;
border-left: 3px solid #00ffff;
}
.input-group { margin: 10px 0; }
.input-group input {
width: 70%;
padding: 10px;
background: #1a1a2e;
color: #00ff00;
border: 1px solid #00ff00;
border-radius: 5px;
}
.btn {
background: #ff0040;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
font-family: 'Courier New', monospace;
}
.btn:hover { background: #cc0033; }
.result-box {
background: rgba(0, 0, 0, 0.5);
border: 1px solid #00ffff;
border-radius: 5px;
padding: 15px;
margin: 10px 0;
display: none;
}
.status-online { color: #00ff00; }
.status-warning { color: #ffff00; }
.status-critical { color: #ff0040; }
</style>
</head>
<body>
<div class="container">
<h1>πŸ›‘οΈ CYBER-LLM OPERATIONS CENTER</h1>
<div class="stats-grid">
<div class="stat-card">
<div class="stat-value">""" + str(apt_count) + """</div>
<div>APT Groups Tracked</div>
</div>
<div class="stat-card">
<div class="stat-value">""" + str(ioc_count) + """</div>
<div>IOCs Monitored</div>
</div>
<div class="stat-card">
<div class="stat-value status-online">ONLINE</div>
<div>System Status</div>
</div>
<div class="stat-card">
<div class="stat-value">97.3%</div>
<div>Detection Rate</div>
</div>
</div>
<div class="section">
<h2>🎯 TARGET ANALYSIS</h2>
<div class="input-group">
<input type="text" id="targetInput" placeholder="Enter IP, domain, hash, or IOC..." />
<button class="btn" onclick="analyzeTarget()">πŸ” ANALYZE</button>
</div>
<div id="analysisResult" class="result-box"></div>
</div>
<div class="section">
<h2>πŸ΄β€β˜ οΈ ACTIVE APT GROUPS</h2>
<ul class="threat-list">
<li><strong>APT29 (Cozy Bear)</strong> - πŸ‡·πŸ‡Ί Russia | Active Threat Actor</li>
<li><strong>APT28 (Fancy Bear)</strong> - πŸ‡·πŸ‡Ί Russia | Advanced Persistent Threat</li>
<li><strong>Lazarus (Hidden Cobra)</strong> - πŸ‡°πŸ‡΅ North Korea | Financial Focus</li>
</ul>
</div>
<div class="section">
<h2>⚑ RECENT INTELLIGENCE</h2>
<ul class="threat-list">
<li>🚨 New campaign targeting financial institutions detected</li>
<li>πŸ” Suspicious domain activity: malicious-banking.com</li>
<li>⚠️ Zero-day vulnerability in web frameworks identified</li>
<li>πŸ›‘οΈ Defensive countermeasures updated</li>
</ul>
</div>
</div>
<script>
async function analyzeTarget() {
const target = document.getElementById('targetInput').value;
if (!target) {
alert('Please enter a target to analyze');
return;
}
const resultDiv = document.getElementById('analysisResult');
resultDiv.innerHTML = '<div style="color: #ffff00;">πŸ”„ Analyzing target...</div>';
resultDiv.style.display = 'block';
try {
const response = await fetch('/analyze', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ target: target, analysis_type: 'comprehensive' })
});
const result = await response.json();
resultDiv.innerHTML = `
<h3 style="color: #00ffff;">🎯 Analysis Results</h3>
<p><strong>Target:</strong> ${target}</p>
<p><strong>Threat Level:</strong> <span class="status-${result.threat_level}">${result.threat_level.toUpperCase()}</span></p>
<p><strong>Confidence:</strong> ${(result.confidence * 100).toFixed(1)}%</p>
<p><strong>Type:</strong> ${result.analysis.type}</p>
<p><strong>Description:</strong> ${result.analysis.description}</p>
<p><strong>Recommendations:</strong> ${result.analysis.recommendations}</p>
`;
} catch (error) {
resultDiv.innerHTML = '<div style="color: #ff0040;">❌ Analysis failed: ' + error.message + '</div>';
}
}
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content)
@app.post("/analyze", response_model=ThreatResponse)
async def analyze_target(request: TargetAnalysisRequest):
"""Analyze a target for threat intelligence"""
target = request.target.lower()
# Default analysis
threat_level = "low"
confidence = 0.7
analysis = {
"target": request.target,
"type": "clean",
"description": "Target appears benign based on current intelligence",
"recommendations": "Continue monitoring for changes"
}
# Check against known IOCs
if any(ioc in target for ioc in THREAT_INTELLIGENCE["iocs"]):
threat_level = "critical"
confidence = 0.95
analysis.update({
"type": "known_malicious",
"description": "Target matches known IOC in threat intelligence database",
"recommendations": "BLOCK IMMEDIATELY - Known malicious indicator"
})
elif any(keyword in target for keyword in ["malicious", "evil", "hack", "attack", "phish"]):
threat_level = "warning"
confidence = 0.8
analysis.update({
"type": "suspicious",
"description": "Target contains suspicious keywords indicating potential threat",
"recommendations": "Investigate further and implement monitoring"
})
return ThreatResponse(
threat_level=threat_level,
confidence=confidence,
analysis=analysis
)
@app.get("/health")
async def health_check():
"""Health check endpoint for monitoring"""
return {
"status": "healthy",
"service": "cyber-llm",
"version": "2.0.0",
"timestamp": datetime.now().isoformat(),
"threat_db_size": len(THREAT_INTELLIGENCE["apt_groups"])
}
@app.get("/api/threats")
async def get_threats():
"""Get current threat intelligence data"""
return JSONResponse(content=THREAT_INTELLIGENCE)
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860))
print(f"πŸ›‘οΈ Starting Cyber-LLM Operations Center on port {port}")
uvicorn.run(app, host="0.0.0.0", port=port)