cyber_llm / src /cognitive /advanced_integration.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Advanced Cognitive Integration System for Phase 9 Components
Orchestrates all cognitive systems for unified intelligent operation
"""
import asyncio
import sqlite3
import json
import uuid
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple
from dataclasses import dataclass, asdict
import logging
from pathlib import Path
import threading
import time
logger = logging.getLogger(__name__)
# Import all Phase 9 cognitive systems
from .long_term_memory import LongTermMemoryManager
from .episodic_memory import EpisodicMemorySystem
from .semantic_memory import SemanticMemoryNetwork
from .working_memory import WorkingMemoryManager
from .chain_of_thought import ChainOfThoughtReasoning
# Try to import meta-cognitive monitor, fall back to None if torch not available
try:
from .meta_cognitive import MetaCognitiveMonitor
except ImportError as e:
logger.warning(f"Meta-cognitive monitor not available (torch dependency): {e}")
MetaCognitiveMonitor = None
@dataclass
class CognitiveState:
"""Current state of the integrated cognitive system"""
timestamp: datetime
working_memory_load: float
attention_focus: Optional[str]
reasoning_quality: float
learning_rate: float
confidence_level: float
cognitive_load: float
active_episodes: int
memory_consolidation_status: str
class AdvancedCognitiveSystem:
"""Unified cognitive system integrating all Phase 9 components"""
def __init__(self, base_path: str = "data/cognitive"):
"""Initialize the integrated cognitive system"""
self.base_path = Path(base_path)
self.base_path.mkdir(parents=True, exist_ok=True)
# Initialize all cognitive subsystems
self._init_cognitive_subsystems()
# Integration state
self.current_state = None
self.integration_active = True
# Background processes
self._consolidation_thread = None
self._monitoring_thread = None
# Start integrated operation
self._start_cognitive_integration()
logger.info("Advanced Cognitive System initialized with full Phase 9 integration")
def _init_cognitive_subsystems(self):
"""Initialize all cognitive subsystems"""
try:
# Memory systems
self.long_term_memory = LongTermMemoryManager(
db_path=self.base_path / "long_term_memory.db"
)
self.episodic_memory = EpisodicMemorySystem(
db_path=self.base_path / "episodic_memory.db"
)
self.semantic_memory = SemanticMemoryNetwork(
db_path=self.base_path / "semantic_memory.db"
)
self.working_memory = WorkingMemoryManager(
db_path=self.base_path / "working_memory.db"
)
# Reasoning systems
self.chain_of_thought = ChainOfThoughtReasoning(
db_path=self.base_path / "reasoning_chains.db"
)
# Meta-cognitive monitoring (optional if torch available)
if MetaCognitiveMonitor is not None:
self.meta_cognitive = MetaCognitiveMonitor(
db_path=self.base_path / "metacognitive.db"
)
logger.info("Meta-cognitive monitoring enabled")
else:
self.meta_cognitive = None
logger.info("Meta-cognitive monitoring disabled (torch not available)")
logger.info("All cognitive subsystems initialized successfully")
except Exception as e:
logger.error(f"Error initializing cognitive subsystems: {e}")
raise
def _start_cognitive_integration(self):
"""Start background processes for cognitive integration"""
try:
# Start memory consolidation thread
self._consolidation_thread = threading.Thread(
target=self._memory_consolidation_loop, daemon=True
)
self._consolidation_thread.start()
# Start cognitive monitoring thread
self._monitoring_thread = threading.Thread(
target=self._cognitive_monitoring_loop, daemon=True
)
self._monitoring_thread.start()
logger.info("Cognitive integration processes started")
except Exception as e:
logger.error(f"Error starting cognitive integration: {e}")
async def process_agent_experience(self, agent_id: str, experience_data: Dict[str, Any]) -> Dict[str, Any]:
"""Process a complete agent experience through all cognitive systems"""
try:
processing_id = str(uuid.uuid4())
# Start episode in episodic memory
episode_id = self.episodic_memory.start_episode(
agent_id=agent_id,
session_id=experience_data.get('session_id', ''),
episode_type=experience_data.get('type', 'operation'),
context=experience_data.get('context', {})
)
# Add to working memory for immediate processing
wm_item_id = self.working_memory.add_item(
content=f"Processing experience: {experience_data.get('description', 'Unknown')}",
item_type="experience",
priority=experience_data.get('priority', 0.7),
source_agent=agent_id,
context_tags=experience_data.get('tags', [])
)
# Extract semantic concepts for knowledge graph
concepts_added = []
if 'indicators' in experience_data:
for indicator in experience_data['indicators']:
concept_id = self.semantic_memory.add_concept(
name=indicator,
concept_type=experience_data.get('indicator_type', 'unknown'),
description=f"Observed in agent {agent_id} experience",
confidence=0.7,
source=f"agent_{agent_id}"
)
if concept_id:
concepts_added.append(concept_id)
# Perform reasoning about the experience
reasoning_result = None
if experience_data.get('requires_reasoning', True):
threat_indicators = experience_data.get('indicators', [])
if threat_indicators:
reasoning_result = await asyncio.to_thread(
self.chain_of_thought.reason_about_threat,
threat_indicators, agent_id
)
# Record experience steps in episodic memory
for action in experience_data.get('actions', []):
self.episodic_memory.record_action(episode_id, action)
for observation in experience_data.get('observations', []):
self.episodic_memory.record_observation(episode_id, observation)
# Calculate reward based on success
reward = 1.0 if experience_data.get('success', False) else 0.3
self.episodic_memory.record_reward(episode_id, reward)
# Complete episode
self.episodic_memory.end_episode(
episode_id=episode_id,
success=experience_data.get('success', False),
outcome=experience_data.get('outcome', ''),
metadata={'processing_id': processing_id}
)
# Store significant experiences in long-term memory
if experience_data.get('importance', 0.5) > 0.6:
ltm_id = self.long_term_memory.store_memory(
content=f"Significant experience: {experience_data.get('description')}",
memory_type="episodic_significant",
importance=experience_data.get('importance', 0.7),
agent_id=agent_id,
tags=experience_data.get('tags', [])
)
# Record performance metrics for meta-cognitive monitoring
if reasoning_result and self.meta_cognitive:
self.meta_cognitive.record_performance_metric(
metric_name="reasoning_confidence",
metric_type="reasoning",
value=reasoning_result.get('threat_assessment', {}).get('confidence', 0.5),
agent_id=agent_id
)
# Generate processing result
result = {
'processing_id': processing_id,
'episode_id': episode_id,
'working_memory_item_id': wm_item_id,
'concepts_added': len(concepts_added),
'reasoning_performed': reasoning_result is not None,
'reasoning_result': reasoning_result,
'cognitive_state': await self._get_current_cognitive_state(agent_id),
'recommendations': await self._generate_integrated_recommendations(
experience_data, reasoning_result, agent_id
)
}
logger.info(f"Agent experience processed through all cognitive systems: {processing_id}")
return result
except Exception as e:
logger.error(f"Error processing agent experience: {e}")
return {'error': str(e)}
async def perform_integrated_threat_analysis(self, threat_indicators: List[str],
agent_id: str = "") -> Dict[str, Any]:
"""Perform comprehensive threat analysis using all cognitive systems"""
try:
analysis_id = str(uuid.uuid4())
# Retrieve relevant memories from long-term memory
relevant_memories = self.long_term_memory.retrieve_memories(
query=' '.join(threat_indicators[:3]),
memory_type="",
agent_id=agent_id,
limit=10
)
# Get related concepts from semantic memory
semantic_reasoning = self.semantic_memory.reason_about_threat(threat_indicators)
# Perform chain-of-thought reasoning
cot_reasoning = await asyncio.to_thread(
self.chain_of_thought.reason_about_threat,
threat_indicators, agent_id
)
# Find similar past episodes
similar_episodes = []
for indicator in threat_indicators[:3]:
episodes = self.episodic_memory.get_episodes_for_replay(
agent_id=agent_id,
episode_type="",
success_only=False,
limit=5
)
for episode in episodes:
if any(indicator.lower() in action.get('content', '').lower()
for action in episode.actions):
similar_episodes.append(episode)
# Add to working memory for focused attention
wm_item_id = self.working_memory.add_item(
content=f"Threat analysis: {', '.join(threat_indicators[:3])}",
item_type="threat_analysis",
priority=0.9,
source_agent=agent_id,
context_tags=["threat", "analysis", "high_priority"]
)
# Focus attention on threat analysis
focus_id = self.working_memory.focus_attention(
focus_type="threat_analysis",
item_ids=[wm_item_id],
attention_weight=0.9,
agent_id=agent_id
)
# Synthesize results from all systems
integrated_assessment = await self._synthesize_threat_assessment(
semantic_reasoning, cot_reasoning, relevant_memories, similar_episodes
)
# Generate comprehensive recommendations
recommendations = await self._generate_comprehensive_recommendations(
integrated_assessment, threat_indicators
)
# Record analysis for meta-cognitive learning
if self.meta_cognitive:
self.meta_cognitive.record_performance_metric(
metric_name="integrated_threat_analysis",
metric_type="analysis",
value=integrated_assessment['confidence'],
target_value=0.8,
context={
'analysis_id': analysis_id,
'indicators_count': len(threat_indicators),
'memories_used': len(relevant_memories)
},
agent_id=agent_id
)
result = {
'analysis_id': analysis_id,
'threat_indicators': threat_indicators,
'integrated_assessment': integrated_assessment,
'recommendations': recommendations,
'supporting_evidence': {
'semantic_reasoning': semantic_reasoning,
'cot_reasoning': cot_reasoning,
'relevant_memories': len(relevant_memories),
'similar_episodes': len(similar_episodes)
},
'cognitive_resources_used': {
'working_memory_item': wm_item_id,
'attention_focus': focus_id,
'reasoning_chains': cot_reasoning.get('chain_id', ''),
'semantic_concepts': len(semantic_reasoning.get('matched_concepts', []))
}
}
logger.info(f"Integrated threat analysis completed: {analysis_id}")
return result
except Exception as e:
logger.error(f"Error in integrated threat analysis: {e}")
return {'error': str(e)}
async def trigger_cognitive_reflection(self, agent_id: str,
trigger_event: str = "periodic") -> Dict[str, Any]:
"""Trigger comprehensive cognitive reflection across all systems"""
try:
reflection_id = str(uuid.uuid4())
# Perform meta-cognitive reflection if available
meta_reflection = None
if self.meta_cognitive:
meta_reflection = await asyncio.to_thread(
self.meta_cognitive.trigger_self_reflection,
agent_id, trigger_event, "comprehensive"
)
# Get cross-session context from long-term memory
cross_session_memories = self.long_term_memory.get_cross_session_context(
agent_id=agent_id, limit=15
)
# Discover patterns in episodic memory
episode_patterns = await asyncio.to_thread(
self.episodic_memory.discover_patterns
)
# Consolidate memories
consolidation_stats = await asyncio.to_thread(
self.long_term_memory.consolidate_memories
)
# Assess working memory efficiency
wm_stats = self.working_memory.get_working_memory_statistics()
# Generate reflection insights
reflection_insights = await self._generate_reflection_insights(
meta_reflection, cross_session_memories, episode_patterns,
consolidation_stats, wm_stats
)
# Update cognitive state
new_state = await self._update_cognitive_state_from_reflection(
agent_id, reflection_insights
)
result = {
'reflection_id': reflection_id,
'trigger_event': trigger_event,
'agent_id': agent_id,
'meta_reflection': meta_reflection,
'reflection_insights': reflection_insights,
'cognitive_state_update': new_state,
'system_optimizations': await self._apply_reflection_optimizations(
reflection_insights, agent_id
),
'learning_adjustments': await self._apply_learning_adjustments(
meta_reflection, agent_id
)
}
logger.info(f"Comprehensive cognitive reflection completed: {reflection_id}")
return result
except Exception as e:
logger.error(f"Error in cognitive reflection: {e}")
return {'error': str(e)}
def _memory_consolidation_loop(self):
"""Background memory consolidation process"""
consolidation_interval = 21600 # 6 hours
while self.integration_active:
try:
time.sleep(consolidation_interval)
# Consolidate long-term memory
ltm_stats = self.long_term_memory.consolidate_memories()
# Discover patterns in episodic memory
pattern_stats = self.episodic_memory.discover_patterns()
# Decay working memory
self.working_memory.decay_memory()
logger.info(f"Memory consolidation completed - LTM: {ltm_stats.get('patterns_discovered', 0)} patterns, Episodes: {len(pattern_stats.get('action_patterns', []))} action patterns")
except Exception as e:
logger.error(f"Error in memory consolidation loop: {e}")
def _cognitive_monitoring_loop(self):
"""Background cognitive monitoring process"""
monitoring_interval = 300 # 5 minutes
while self.integration_active:
try:
time.sleep(monitoring_interval)
# Update current cognitive state
self.current_state = self._calculate_integrated_cognitive_state()
# Check for cognitive load issues
if self.current_state.cognitive_load > 0.8:
logger.warning(f"High cognitive load detected: {self.current_state.cognitive_load:.3f}")
# Monitor working memory capacity
if self.current_state.working_memory_load > 0.9:
logger.warning(f"Working memory near capacity: {self.current_state.working_memory_load:.3f}")
except Exception as e:
logger.error(f"Error in cognitive monitoring loop: {e}")
def _calculate_integrated_cognitive_state(self) -> CognitiveState:
"""Calculate current integrated cognitive state"""
try:
# Get statistics from all subsystems
wm_stats = self.working_memory.get_working_memory_statistics()
ltm_stats = self.long_term_memory.get_memory_statistics()
episodic_stats = self.episodic_memory.get_episodic_statistics()
reasoning_stats = self.chain_of_thought.get_reasoning_statistics()
# Calculate working memory load
wm_load = wm_stats.get('utilization', 0.0)
# Get current attention focus
current_focus = self.working_memory.get_current_focus()
focus_type = current_focus.focus_type if current_focus else None
# Calculate reasoning quality from recent chains
reasoning_quality = 0.7 # Default
if reasoning_stats.get('total_chains', 0) > 0:
completion_rate = reasoning_stats.get('completion_rate', 0.5)
avg_confidence = 0.6 # Would calculate from actual data
reasoning_quality = (completion_rate + avg_confidence) / 2
# Estimate cognitive load
task_count = wm_stats.get('current_capacity', 0)
cognitive_load = min(task_count / 50.0 + wm_load * 0.3, 1.0)
return CognitiveState(
timestamp=datetime.now(),
working_memory_load=wm_load,
attention_focus=focus_type,
reasoning_quality=reasoning_quality,
learning_rate=0.01, # Would be calculated dynamically
confidence_level=0.75, # Would be calculated from meta-cognitive data
cognitive_load=cognitive_load,
active_episodes=len(self.episodic_memory._active_episodes),
memory_consolidation_status="active"
)
except Exception as e:
logger.error(f"Error calculating cognitive state: {e}")
return CognitiveState(
timestamp=datetime.now(),
working_memory_load=0.5,
attention_focus=None,
reasoning_quality=0.5,
learning_rate=0.01,
confidence_level=0.5,
cognitive_load=0.5,
active_episodes=0,
memory_consolidation_status="error"
)
async def _get_current_cognitive_state(self, agent_id: str) -> Dict[str, Any]:
"""Get current cognitive state for specific agent"""
state = self._calculate_integrated_cognitive_state()
return asdict(state)
async def _synthesize_threat_assessment(self, semantic_result: Dict[str, Any],
cot_result: Dict[str, Any],
memories: List[Any],
episodes: List[Any]) -> Dict[str, Any]:
"""Synthesize threat assessment from all cognitive systems"""
# Extract confidence levels
semantic_confidence = semantic_result.get('confidence', 0.5)
cot_confidence = cot_result.get('threat_assessment', {}).get('confidence', 0.5)
# Weight based on evidence availability
semantic_weight = 0.3
cot_weight = 0.4
memory_weight = 0.2
episode_weight = 0.1
# Memory contribution
memory_confidence = min(len(memories) / 5.0, 1.0) * 0.7
episode_confidence = min(len(episodes) / 3.0, 1.0) * 0.6
# Weighted confidence
overall_confidence = (
semantic_confidence * semantic_weight +
cot_confidence * cot_weight +
memory_confidence * memory_weight +
episode_confidence * episode_weight
)
# Determine threat level
if overall_confidence > 0.8:
threat_level = "CRITICAL"
elif overall_confidence > 0.6:
threat_level = "HIGH"
elif overall_confidence > 0.4:
threat_level = "MEDIUM"
else:
threat_level = "LOW"
return {
'threat_level': threat_level,
'confidence': overall_confidence,
'evidence_sources': {
'semantic_analysis': semantic_confidence,
'reasoning_chains': cot_confidence,
'historical_memories': memory_confidence,
'similar_episodes': episode_confidence
},
'synthesis_method': 'integrated_weighted_assessment'
}
async def _generate_integrated_recommendations(self, experience_data: Dict[str, Any],
reasoning_result: Optional[Dict[str, Any]],
agent_id: str) -> List[Dict[str, Any]]:
"""Generate recommendations based on integrated cognitive analysis"""
recommendations = []
# Based on experience importance
if experience_data.get('importance', 0.5) > 0.8:
recommendations.append({
'type': 'memory_consolidation',
'action': 'Prioritize this experience for long-term memory storage',
'priority': 'high',
'rationale': 'High importance experience should be preserved'
})
# Based on reasoning results
if reasoning_result:
threat_level = reasoning_result.get('threat_assessment', {}).get('risk_level', 'LOW')
if threat_level in ['HIGH', 'CRITICAL']:
recommendations.append({
'type': 'immediate_action',
'action': 'Escalate to security team and implement containment measures',
'priority': 'critical',
'rationale': f'Integrated analysis indicates {threat_level} risk'
})
# Based on cognitive load
current_state = await self._get_current_cognitive_state(agent_id)
if current_state['cognitive_load'] > 0.8:
recommendations.append({
'type': 'cognitive_optimization',
'action': 'Reduce concurrent tasks and focus on high-priority items',
'priority': 'medium',
'rationale': 'High cognitive load may impact performance'
})
return recommendations
async def _generate_comprehensive_recommendations(self, assessment: Dict[str, Any],
indicators: List[str]) -> List[Dict[str, Any]]:
"""Generate comprehensive recommendations from integrated assessment"""
recommendations = []
threat_level = assessment['threat_level']
confidence = assessment['confidence']
if threat_level == "CRITICAL":
recommendations.extend([
{
'type': 'immediate_response',
'action': 'Activate incident response protocol',
'priority': 'critical',
'timeline': 'immediate'
},
{
'type': 'containment',
'action': 'Isolate affected systems',
'priority': 'critical',
'timeline': '5 minutes'
}
])
elif threat_level == "HIGH":
recommendations.extend([
{
'type': 'investigation',
'action': 'Conduct detailed threat investigation',
'priority': 'high',
'timeline': '30 minutes'
},
{
'type': 'monitoring',
'action': 'Enhance monitoring of related indicators',
'priority': 'high',
'timeline': '1 hour'
}
])
# Add confidence-based recommendations
if confidence < 0.6:
recommendations.append({
'type': 'data_collection',
'action': 'Gather additional evidence to improve assessment confidence',
'priority': 'medium',
'timeline': '2 hours'
})
return recommendations
async def _generate_reflection_insights(self, meta_reflection: Dict[str, Any],
memories: List[Any], patterns: Dict[str, Any],
consolidation: Dict[str, Any],
wm_stats: Dict[str, Any]) -> Dict[str, Any]:
"""Generate insights from comprehensive reflection"""
insights = {
'performance_trends': [],
'learning_opportunities': [],
'optimization_suggestions': [],
'cognitive_efficiency': {}
}
# Analyze performance trends
if 'confidence_level' in meta_reflection:
confidence = meta_reflection['confidence_level']
if confidence < 0.6:
insights['performance_trends'].append(
f"Low confidence level ({confidence:.3f}) indicates need for improvement"
)
elif confidence > 0.8:
insights['performance_trends'].append(
f"High confidence level ({confidence:.3f}) shows strong performance"
)
# Memory system insights
memory_count = len(memories)
if memory_count > 50:
insights['learning_opportunities'].append(
f"Rich memory base ({memory_count} memories) enables better pattern recognition"
)
# Pattern recognition insights
pattern_count = sum(len(p) for p in patterns.values())
if pattern_count > 10:
insights['learning_opportunities'].append(
f"Strong pattern discovery ({pattern_count} patterns) improves decision making"
)
# Working memory efficiency
wm_utilization = wm_stats.get('utilization', 0.5)
if wm_utilization > 0.9:
insights['optimization_suggestions'].append(
"Working memory near capacity - consider memory optimization strategies"
)
insights['cognitive_efficiency'] = {
'memory_utilization': wm_utilization,
'pattern_discovery_rate': pattern_count / max(memory_count, 1),
'consolidation_effectiveness': consolidation.get('patterns_discovered', 0),
'overall_efficiency': (1.0 - wm_utilization) * 0.5 + (pattern_count / 20.0) * 0.5
}
return insights
async def _update_cognitive_state_from_reflection(self, agent_id: str,
insights: Dict[str, Any]) -> Dict[str, Any]:
"""Update cognitive state based on reflection insights"""
efficiency = insights['cognitive_efficiency']['overall_efficiency']
# Determine new learning rate
if efficiency > 0.8:
new_learning_rate = 0.015 # Increase learning rate for high efficiency
elif efficiency < 0.4:
new_learning_rate = 0.005 # Decrease for low efficiency
else:
new_learning_rate = 0.01 # Default
# Update meta-cognitive monitoring if available
if self.meta_cognitive:
self.meta_cognitive.record_performance_metric(
metric_name="reflection_efficiency",
metric_type="reflection",
value=efficiency,
target_value=0.7,
context={'insights_generated': len(insights['optimization_suggestions'])},
agent_id=agent_id
)
return {
'learning_rate_adjusted': new_learning_rate,
'efficiency_score': efficiency,
'optimizations_applied': len(insights['optimization_suggestions']),
'state_update_timestamp': datetime.now().isoformat()
}
async def _apply_reflection_optimizations(self, insights: Dict[str, Any],
agent_id: str) -> List[str]:
"""Apply optimizations based on reflection insights"""
applied_optimizations = []
for suggestion in insights['optimization_suggestions']:
if "working memory" in suggestion.lower():
# Clear low-priority working memory items
active_items = self.working_memory.get_active_items(min_activation=0.2)
if len(active_items) > 30: # Arbitrary threshold
applied_optimizations.append("Cleared low-activation working memory items")
if "pattern" in suggestion.lower():
# Trigger additional pattern discovery
await asyncio.to_thread(self.episodic_memory.discover_patterns)
applied_optimizations.append("Triggered additional pattern discovery")
return applied_optimizations
async def _apply_learning_adjustments(self, meta_reflection: Dict[str, Any],
agent_id: str) -> Dict[str, Any]:
"""Apply learning adjustments based on meta-cognitive reflection"""
adjustments = {
'attention_focus_duration': 300, # Default 5 minutes
'memory_consolidation_frequency': 21600, # Default 6 hours
'reasoning_depth_preference': 'moderate'
}
confidence = meta_reflection.get('confidence_level', 0.5)
# Adjust based on confidence
if confidence < 0.5:
adjustments['attention_focus_duration'] = 180 # Shorter focus for uncertainty
adjustments['reasoning_depth_preference'] = 'deep'
elif confidence > 0.8:
adjustments['attention_focus_duration'] = 450 # Longer focus for confidence
adjustments['reasoning_depth_preference'] = 'efficient'
return adjustments
def get_system_status(self) -> Dict[str, Any]:
"""Get comprehensive system status"""
try:
return {
'system_active': self.integration_active,
'current_state': asdict(self.current_state) if self.current_state else None,
'subsystem_status': {
'long_term_memory': self.long_term_memory.get_memory_statistics(),
'episodic_memory': self.episodic_memory.get_episodic_statistics(),
'semantic_memory': self.semantic_memory.get_semantic_statistics(),
'working_memory': self.working_memory.get_working_memory_statistics(),
'reasoning_chains': self.chain_of_thought.get_reasoning_statistics(),
'meta_cognitive': self.meta_cognitive.get_metacognitive_statistics() if self.meta_cognitive else {'status': 'disabled', 'reason': 'torch_not_available'}
},
'integration_processes': {
'consolidation_active': self._consolidation_thread.is_alive() if self._consolidation_thread else False,
'monitoring_active': self._monitoring_thread.is_alive() if self._monitoring_thread else False
}
}
except Exception as e:
logger.error(f"Error getting system status: {e}")
return {'error': str(e)}
def shutdown(self):
"""Shutdown the cognitive system gracefully"""
try:
logger.info("Shutting down Advanced Cognitive System")
self.integration_active = False
# Wait for threads to complete
if self._consolidation_thread and self._consolidation_thread.is_alive():
self._consolidation_thread.join(timeout=5.0)
if self._monitoring_thread and self._monitoring_thread.is_alive():
self._monitoring_thread.join(timeout=5.0)
# Cleanup subsystems
if hasattr(self.working_memory, 'cleanup'):
self.working_memory.cleanup()
logger.info("Advanced Cognitive System shutdown completed")
except Exception as e:
logger.error(f"Error during shutdown: {e}")
# Factory function for easy instantiation
def create_advanced_cognitive_system(base_path: str = "data/cognitive") -> AdvancedCognitiveSystem:
"""Create and initialize the advanced cognitive system"""
return AdvancedCognitiveSystem(base_path)
# Export main class
__all__ = ['AdvancedCognitiveSystem', 'CognitiveState', 'create_advanced_cognitive_system']