cyber_llm / src /governance /ai_ethics.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
AI Ethics and Responsible AI Framework for Cyber-LLM
Comprehensive ethical AI implementation with bias monitoring, fairness, and transparency
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass, field
from enum import Enum
import numpy as np
import pandas as pd
from pathlib import Path
import yaml
import sqlite3
from collections import defaultdict
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..learning.constitutional_ai import ConstitutionalAIManager
class EthicsFramework(Enum):
"""Supported AI ethics frameworks"""
IEEE_ETHICALLY_ALIGNED = "ieee_ethically_aligned"
EU_AI_ACT = "eu_ai_act"
NIST_AI_RMF = "nist_ai_rmf"
RESPONSIBLE_AI_MICROSOFT = "microsoft_responsible_ai"
PARTNERSHIP_ON_AI = "partnership_on_ai"
class BiasType(Enum):
"""Types of bias to monitor"""
DEMOGRAPHIC = "demographic"
REPRESENTATION = "representation"
MEASUREMENT = "measurement"
AGGREGATION = "aggregation"
EVALUATION = "evaluation"
HISTORICAL = "historical"
CONFIRMATION = "confirmation"
class FairnessMetric(Enum):
"""Fairness metrics"""
DEMOGRAPHIC_PARITY = "demographic_parity"
EQUALIZED_ODDS = "equalized_odds"
EQUAL_OPPORTUNITY = "equal_opportunity"
CALIBRATION = "calibration"
INDIVIDUAL_FAIRNESS = "individual_fairness"
COUNTERFACTUAL_FAIRNESS = "counterfactual_fairness"
class TransparencyLevel(Enum):
"""Model transparency levels"""
BLACK_BOX = "black_box"
LIMITED_EXPLANATION = "limited_explanation"
FEATURE_IMPORTANCE = "feature_importance"
RULE_BASED = "rule_based"
FULL_TRANSPARENCY = "full_transparency"
@dataclass
class BiasAssessment:
"""Bias assessment result"""
assessment_id: str
model_id: str
assessment_date: datetime
# Bias metrics by type
bias_scores: Dict[BiasType, float]
fairness_metrics: Dict[FairnessMetric, float]
# Demographic analysis
demographic_groups: List[str]
performance_by_group: Dict[str, Dict[str, float]]
# Assessment details
assessment_method: str
confidence_level: float
recommendations: List[str]
# Overall assessment
bias_risk_level: str # low, medium, high, critical
fairness_compliance: bool
requires_intervention: bool
@dataclass
class ExplainabilityReport:
"""Model explainability report"""
report_id: str
model_id: str
generated_at: datetime
# Transparency metrics
transparency_level: TransparencyLevel
explainability_score: float # 0-1
# Feature importance
global_feature_importance: Dict[str, float]
local_explanations_available: bool
# Explanation methods used
explanation_methods: List[str] # SHAP, LIME, attention weights, etc.
# User comprehension
explanation_quality: Dict[str, float] # clarity, completeness, actionability
user_satisfaction_score: Optional[float]
@dataclass
class EthicsViolation:
"""Ethics violation record"""
violation_id: str
model_id: str
violation_type: str
severity: str # low, medium, high, critical
description: str
evidence: Dict[str, Any]
detected_at: datetime
# Resolution tracking
status: str = "open" # open, investigating, resolved, false_positive
assigned_to: Optional[str] = None
resolution_plan: Optional[str] = None
resolved_at: Optional[datetime] = None
class AIEthicsManager:
"""Comprehensive AI ethics and responsible AI management"""
def __init__(self,
config_path: str = "configs/ethics_config.yaml",
logger: Optional[CyberLLMLogger] = None):
self.logger = logger or CyberLLMLogger(name="ai_ethics")
self.config_path = Path(config_path)
self.config = self._load_config()
# Initialize components
self.constitutional_ai = ConstitutionalAIManager()
self.bias_assessments = {}
self.explainability_reports = {}
self.ethics_violations = []
# Database for ethics tracking
self.db_path = Path("data/ai_ethics.db")
self.db_path.parent.mkdir(parents=True, exist_ok=True)
# Initialize ethics framework
asyncio.create_task(self._initialize_ethics_system())
self.logger.info("AI Ethics manager initialized")
def _load_config(self) -> Dict[str, Any]:
"""Load ethics configuration"""
default_config = {
"ethics_frameworks": ["EU_AI_ACT", "NIST_AI_RMF"],
"bias_thresholds": {
"demographic_parity": 0.1,
"equalized_odds": 0.1,
"equal_opportunity": 0.1
},
"fairness_requirements": {
"minimum_fairness_score": 0.8,
"demographic_groups": ["gender", "age", "ethnicity", "location"],
"protected_attributes": ["race", "gender", "religion", "political_affiliation"]
},
"transparency_requirements": {
"minimum_explainability_score": 0.7,
"explanation_methods": ["SHAP", "LIME", "attention"],
"local_explanations_required": True
},
"monitoring": {
"continuous_bias_monitoring": True,
"fairness_drift_detection": True,
"explanation_quality_tracking": True
}
}
if self.config_path.exists():
with open(self.config_path, 'r') as f:
user_config = yaml.safe_load(f)
default_config.update(user_config)
else:
self.config_path.parent.mkdir(exist_ok=True, parents=True)
with open(self.config_path, 'w') as f:
yaml.dump(default_config, f)
return default_config
async def _initialize_ethics_system(self):
"""Initialize AI ethics system and database"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Bias assessments table
cursor.execute("""
CREATE TABLE IF NOT EXISTS bias_assessments (
assessment_id TEXT PRIMARY KEY,
model_id TEXT NOT NULL,
assessment_date TIMESTAMP,
bias_scores TEXT, -- JSON
fairness_metrics TEXT, -- JSON
demographic_groups TEXT, -- JSON
performance_by_group TEXT, -- JSON
assessment_method TEXT,
confidence_level REAL,
recommendations TEXT, -- JSON
bias_risk_level TEXT,
fairness_compliance BOOLEAN,
requires_intervention BOOLEAN
)
""")
# Explainability reports table
cursor.execute("""
CREATE TABLE IF NOT EXISTS explainability_reports (
report_id TEXT PRIMARY KEY,
model_id TEXT NOT NULL,
generated_at TIMESTAMP,
transparency_level TEXT,
explainability_score REAL,
global_feature_importance TEXT, -- JSON
local_explanations_available BOOLEAN,
explanation_methods TEXT, -- JSON
explanation_quality TEXT, -- JSON
user_satisfaction_score REAL
)
""")
# Ethics violations table
cursor.execute("""
CREATE TABLE IF NOT EXISTS ethics_violations (
violation_id TEXT PRIMARY KEY,
model_id TEXT NOT NULL,
violation_type TEXT,
severity TEXT,
description TEXT,
evidence TEXT, -- JSON
detected_at TIMESTAMP,
status TEXT DEFAULT 'open',
assigned_to TEXT,
resolution_plan TEXT,
resolved_at TIMESTAMP
)
""")
# Fairness monitoring table
cursor.execute("""
CREATE TABLE IF NOT EXISTS fairness_monitoring (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_id TEXT NOT NULL,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
metric_name TEXT,
metric_value REAL,
demographic_group TEXT,
threshold_violated BOOLEAN,
drift_detected BOOLEAN
)
""")
conn.commit()
conn.close()
self.logger.info("AI Ethics system database initialized")
except Exception as e:
self.logger.error("Failed to initialize AI ethics system", error=str(e))
raise CyberLLMError("Ethics system initialization failed", ErrorCategory.SYSTEM)
async def conduct_bias_assessment(self,
model_id: str,
test_data: pd.DataFrame,
protected_attributes: List[str],
target_column: str) -> BiasAssessment:
"""Conduct comprehensive bias assessment"""
assessment_id = f"bias_assessment_{model_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
try:
# Calculate bias metrics
bias_scores = {}
fairness_metrics = {}
performance_by_group = {}
# Demographic parity assessment
for attr in protected_attributes:
if attr in test_data.columns:
dp_score = await self._calculate_demographic_parity(
test_data, attr, target_column
)
bias_scores[BiasType.DEMOGRAPHIC] = dp_score
fairness_metrics[FairnessMetric.DEMOGRAPHIC_PARITY] = dp_score
# Equalized odds assessment
eo_score = await self._calculate_equalized_odds(test_data, protected_attributes, target_column)
fairness_metrics[FairnessMetric.EQUALIZED_ODDS] = eo_score
# Equal opportunity assessment
eop_score = await self._calculate_equal_opportunity(test_data, protected_attributes, target_column)
fairness_metrics[FairnessMetric.EQUAL_OPPORTUNITY] = eop_score
# Performance by demographic group
for attr in protected_attributes:
if attr in test_data.columns:
group_performance = await self._calculate_group_performance(
test_data, attr, target_column
)
performance_by_group[attr] = group_performance
# Overall bias risk assessment
bias_risk_level = self._assess_bias_risk_level(bias_scores, fairness_metrics)
# Generate recommendations
recommendations = await self._generate_bias_recommendations(
bias_scores, fairness_metrics, performance_by_group
)
# Create bias assessment
assessment = BiasAssessment(
assessment_id=assessment_id,
model_id=model_id,
assessment_date=datetime.now(),
bias_scores=bias_scores,
fairness_metrics=fairness_metrics,
demographic_groups=protected_attributes,
performance_by_group=performance_by_group,
assessment_method="comprehensive_statistical_analysis",
confidence_level=0.95,
recommendations=recommendations,
bias_risk_level=bias_risk_level,
fairness_compliance=self._check_fairness_compliance(fairness_metrics),
requires_intervention=bias_risk_level in ["high", "critical"]
)
# Store assessment
await self._store_bias_assessment(assessment)
self.bias_assessments[assessment_id] = assessment
self.logger.info(f"Bias assessment completed for model: {model_id}",
bias_risk=bias_risk_level,
fairness_compliant=assessment.fairness_compliance)
return assessment
except Exception as e:
self.logger.error(f"Failed to conduct bias assessment for model: {model_id}", error=str(e))
raise CyberLLMError("Bias assessment failed", ErrorCategory.ANALYSIS)
async def _calculate_demographic_parity(self,
data: pd.DataFrame,
protected_attr: str,
target_col: str) -> float:
"""Calculate demographic parity score"""
groups = data[protected_attr].unique()
positive_rates = {}
for group in groups:
group_data = data[data[protected_attr] == group]
positive_rate = group_data[target_col].mean()
positive_rates[group] = positive_rate
# Calculate maximum difference in positive rates
rates = list(positive_rates.values())
max_diff = max(rates) - min(rates)
# Convert to fairness score (1 - bias_level)
return 1 - max_diff
async def _calculate_equalized_odds(self,
data: pd.DataFrame,
protected_attrs: List[str],
target_col: str) -> float:
"""Calculate equalized odds score"""
# Simplified equalized odds calculation
# In practice, this would require model predictions and true labels
total_score = 0
valid_attrs = 0
for attr in protected_attrs:
if attr in data.columns:
groups = data[attr].unique()
if len(groups) >= 2:
# Calculate TPR and FPR for each group
group_scores = []
for group in groups:
group_data = data[data[attr] == group]
# Simplified metric - in practice would use true TPR/FPR
score = group_data[target_col].mean()
group_scores.append(score)
# Equalized odds: minimize difference in TPR and FPR across groups
max_diff = max(group_scores) - min(group_scores)
attr_score = 1 - max_diff
total_score += attr_score
valid_attrs += 1
return total_score / valid_attrs if valid_attrs > 0 else 1.0
async def _calculate_equal_opportunity(self,
data: pd.DataFrame,
protected_attrs: List[str],
target_col: str) -> float:
"""Calculate equal opportunity score"""
# Focus on true positive rates across groups
total_score = 0
valid_attrs = 0
for attr in protected_attrs:
if attr in data.columns:
groups = data[attr].unique()
if len(groups) >= 2:
tpr_scores = []
for group in groups:
group_data = data[data[attr] == group]
# Simplified - would use actual TPR in practice
tpr = group_data[target_col].mean()
tpr_scores.append(tpr)
max_diff = max(tpr_scores) - min(tpr_scores)
attr_score = 1 - max_diff
total_score += attr_score
valid_attrs += 1
return total_score / valid_attrs if valid_attrs > 0 else 1.0
async def _calculate_group_performance(self,
data: pd.DataFrame,
protected_attr: str,
target_col: str) -> Dict[str, Dict[str, float]]:
"""Calculate performance metrics by demographic group"""
group_performance = {}
groups = data[protected_attr].unique()
for group in groups:
group_data = data[data[protected_attr] == group]
# Calculate various performance metrics
performance = {
"count": len(group_data),
"positive_rate": group_data[target_col].mean(),
"negative_rate": 1 - group_data[target_col].mean(),
"representation": len(group_data) / len(data)
}
# Add statistical measures
if len(group_data) > 1:
performance["std_dev"] = group_data[target_col].std()
performance["variance"] = group_data[target_col].var()
group_performance[str(group)] = performance
return group_performance
def _assess_bias_risk_level(self,
bias_scores: Dict[BiasType, float],
fairness_metrics: Dict[FairnessMetric, float]) -> str:
"""Assess overall bias risk level"""
min_score = 1.0
# Check bias scores
for score in bias_scores.values():
min_score = min(min_score, score)
# Check fairness metrics
for score in fairness_metrics.values():
min_score = min(min_score, score)
# Determine risk level based on minimum score
if min_score >= 0.9:
return "low"
elif min_score >= 0.8:
return "medium"
elif min_score >= 0.6:
return "high"
else:
return "critical"
def _check_fairness_compliance(self, fairness_metrics: Dict[FairnessMetric, float]) -> bool:
"""Check if model meets fairness compliance requirements"""
thresholds = self.config["bias_thresholds"]
minimum_score = self.config["fairness_requirements"]["minimum_fairness_score"]
for metric, score in fairness_metrics.items():
threshold = thresholds.get(metric.value, minimum_score)
if score < threshold:
return False
return True
async def _generate_bias_recommendations(self,
bias_scores: Dict[BiasType, float],
fairness_metrics: Dict[FairnessMetric, float],
performance_by_group: Dict[str, Dict[str, float]]) -> List[str]:
"""Generate bias remediation recommendations"""
recommendations = []
# Check demographic parity
if FairnessMetric.DEMOGRAPHIC_PARITY in fairness_metrics:
dp_score = fairness_metrics[FairnessMetric.DEMOGRAPHIC_PARITY]
if dp_score < 0.8:
recommendations.append("Apply post-processing calibration to achieve demographic parity")
recommendations.append("Consider re-sampling training data to balance demographic groups")
# Check equalized odds
if FairnessMetric.EQUALIZED_ODDS in fairness_metrics:
eo_score = fairness_metrics[FairnessMetric.EQUALIZED_ODDS]
if eo_score < 0.8:
recommendations.append("Implement equalized odds post-processing")
recommendations.append("Review and adjust decision thresholds per demographic group")
# Check representation
for attr, groups in performance_by_group.items():
min_representation = min(group["representation"] for group in groups.values())
if min_representation < 0.1: # Less than 10% representation
recommendations.append(f"Increase representation for underrepresented groups in {attr}")
# General recommendations
if not recommendations:
recommendations.append("Continue monitoring for bias drift during model operation")
else:
recommendations.append("Implement continuous bias monitoring in production")
recommendations.append("Consider adversarial debiasing techniques during training")
return recommendations
async def generate_explainability_report(self,
model_id: str,
model: Any,
sample_data: pd.DataFrame) -> ExplainabilityReport:
"""Generate comprehensive explainability report"""
report_id = f"explainability_{model_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
try:
# Calculate global feature importance (simplified)
feature_importance = await self._calculate_feature_importance(model, sample_data)
# Determine transparency level
transparency_level = self._assess_transparency_level(model)
# Calculate explainability score
explainability_score = await self._calculate_explainability_score(
model, sample_data, feature_importance
)
# Assess explanation methods availability
explanation_methods = self._identify_explanation_methods(model)
# Evaluate explanation quality
explanation_quality = await self._evaluate_explanation_quality(
model, sample_data, explanation_methods
)
# Create explainability report
report = ExplainabilityReport(
report_id=report_id,
model_id=model_id,
generated_at=datetime.now(),
transparency_level=transparency_level,
explainability_score=explainability_score,
global_feature_importance=feature_importance,
local_explanations_available=len(explanation_methods) > 0,
explanation_methods=explanation_methods,
explanation_quality=explanation_quality,
user_satisfaction_score=None # Would be collected from user feedback
)
# Store report
await self._store_explainability_report(report)
self.explainability_reports[report_id] = report
self.logger.info(f"Explainability report generated for model: {model_id}",
transparency_level=transparency_level.value,
explainability_score=explainability_score)
return report
except Exception as e:
self.logger.error(f"Failed to generate explainability report for model: {model_id}", error=str(e))
raise CyberLLMError("Explainability report generation failed", ErrorCategory.ANALYSIS)
async def _calculate_feature_importance(self,
model: Any,
sample_data: pd.DataFrame) -> Dict[str, float]:
"""Calculate global feature importance"""
# Simplified feature importance calculation
# In practice, would use SHAP, permutation importance, etc.
feature_names = sample_data.columns.tolist()
# Generate random importance scores (placeholder)
# In real implementation, use actual model inspection techniques
importance_scores = np.random.dirichlet(np.ones(len(feature_names)))
return dict(zip(feature_names, importance_scores.tolist()))
def _assess_transparency_level(self, model: Any) -> TransparencyLevel:
"""Assess model transparency level"""
# Simplified assessment based on model type
model_type = type(model).__name__.lower()
if "linear" in model_type or "tree" in model_type:
return TransparencyLevel.FULL_TRANSPARENCY
elif "ensemble" in model_type or "forest" in model_type:
return TransparencyLevel.FEATURE_IMPORTANCE
elif "neural" in model_type or "deep" in model_type:
return TransparencyLevel.LIMITED_EXPLANATION
else:
return TransparencyLevel.BLACK_BOX
async def _calculate_explainability_score(self,
model: Any,
sample_data: pd.DataFrame,
feature_importance: Dict[str, float]) -> float:
"""Calculate overall explainability score"""
# Factors contributing to explainability
transparency_score = self._get_transparency_score(model)
feature_clarity_score = self._assess_feature_clarity(feature_importance)
interpretability_score = self._assess_model_interpretability(model)
# Weighted average
weights = [0.4, 0.3, 0.3]
scores = [transparency_score, feature_clarity_score, interpretability_score]
return sum(w * s for w, s in zip(weights, scores))
def _get_transparency_score(self, model: Any) -> float:
"""Get transparency score based on model type"""
transparency_level = self._assess_transparency_level(model)
scores = {
TransparencyLevel.FULL_TRANSPARENCY: 1.0,
TransparencyLevel.RULE_BASED: 0.9,
TransparencyLevel.FEATURE_IMPORTANCE: 0.7,
TransparencyLevel.LIMITED_EXPLANATION: 0.4,
TransparencyLevel.BLACK_BOX: 0.1
}
return scores.get(transparency_level, 0.1)
def _assess_feature_clarity(self, feature_importance: Dict[str, float]) -> float:
"""Assess clarity of feature importance"""
importance_values = list(feature_importance.values())
# High concentration of importance in few features = more interpretable
gini_coefficient = self._calculate_gini_coefficient(importance_values)
# Convert Gini coefficient to clarity score (higher Gini = more concentrated = clearer)
return gini_coefficient
def _calculate_gini_coefficient(self, values: List[float]) -> float:
"""Calculate Gini coefficient for concentration measurement"""
sorted_values = sorted(values)
n = len(values)
cumulative_sum = sum((i + 1) * val for i, val in enumerate(sorted_values))
return (2 * cumulative_sum) / (n * sum(values)) - (n + 1) / n
def _assess_model_interpretability(self, model: Any) -> float:
"""Assess overall model interpretability"""
# Simplified assessment - in practice would analyze model architecture
model_name = type(model).__name__.lower()
interpretability_scores = {
"logistic": 0.9,
"linear": 0.9,
"tree": 0.8,
"forest": 0.6,
"gradient": 0.5,
"neural": 0.3,
"deep": 0.2
}
for model_type, score in interpretability_scores.items():
if model_type in model_name:
return score
return 0.1 # Default for unknown models
def _identify_explanation_methods(self, model: Any) -> List[str]:
"""Identify available explanation methods for model"""
methods = []
model_name = type(model).__name__.lower()
# Universal methods
methods.extend(["permutation_importance", "partial_dependence"])
# Model-specific methods
if "linear" in model_name:
methods.extend(["coefficients", "feature_weights"])
elif "tree" in model_name:
methods.extend(["tree_structure", "path_analysis"])
elif "neural" in model_name:
methods.extend(["gradient_attribution", "layer_wise_relevance"])
# Advanced methods (if libraries available)
methods.extend(["shap_values", "lime_explanations"])
return methods
async def _evaluate_explanation_quality(self,
model: Any,
sample_data: pd.DataFrame,
explanation_methods: List[str]) -> Dict[str, float]:
"""Evaluate quality of explanations"""
quality_metrics = {
"clarity": 0.0,
"completeness": 0.0,
"actionability": 0.0,
"consistency": 0.0
}
# Clarity: how easy explanations are to understand
quality_metrics["clarity"] = 0.8 if "shap_values" in explanation_methods else 0.6
# Completeness: how much of model behavior is explained
quality_metrics["completeness"] = min(1.0, len(explanation_methods) / 5)
# Actionability: how useful explanations are for decisions
actionable_methods = ["feature_weights", "shap_values", "lime_explanations"]
actionable_count = sum(1 for method in explanation_methods if method in actionable_methods)
quality_metrics["actionability"] = min(1.0, actionable_count / 3)
# Consistency: how stable explanations are
quality_metrics["consistency"] = 0.7 # Would measure through repeated explanations
return quality_metrics
async def monitor_fairness_drift(self,
model_id: str,
current_data: pd.DataFrame,
protected_attributes: List[str],
target_column: str) -> Dict[str, Any]:
"""Monitor for fairness drift over time"""
drift_report = {
"model_id": model_id,
"monitoring_date": datetime.now().isoformat(),
"drift_detected": False,
"drift_metrics": {},
"affected_groups": [],
"recommendations": []
}
try:
# Get historical fairness metrics
historical_metrics = await self._get_historical_fairness_metrics(model_id)
if not historical_metrics:
self.logger.warning(f"No historical fairness data for model: {model_id}")
return drift_report
# Calculate current fairness metrics
current_assessment = await self.conduct_bias_assessment(
model_id, current_data, protected_attributes, target_column
)
current_metrics = current_assessment.fairness_metrics
# Compare metrics for drift
for metric, current_value in current_metrics.items():
if metric.value in historical_metrics:
historical_value = historical_metrics[metric.value]
drift_magnitude = abs(current_value - historical_value)
# Drift threshold (configurable)
drift_threshold = 0.05 # 5% change
drift_report["drift_metrics"][metric.value] = {
"historical_value": historical_value,
"current_value": current_value,
"drift_magnitude": drift_magnitude,
"drift_detected": drift_magnitude > drift_threshold
}
if drift_magnitude > drift_threshold:
drift_report["drift_detected"] = True
# Identify affected demographic groups
if drift_report["drift_detected"]:
affected_groups = await self._identify_affected_groups(
current_assessment, historical_metrics
)
drift_report["affected_groups"] = affected_groups
# Generate recommendations
recommendations = await self._generate_drift_recommendations(drift_report)
drift_report["recommendations"] = recommendations
# Store monitoring record
await self._store_fairness_monitoring_record(drift_report)
return drift_report
except Exception as e:
self.logger.error(f"Failed to monitor fairness drift for model: {model_id}", error=str(e))
raise CyberLLMError("Fairness drift monitoring failed", ErrorCategory.ANALYSIS)
async def _get_historical_fairness_metrics(self, model_id: str) -> Dict[str, float]:
"""Get historical fairness metrics for comparison"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("""
SELECT fairness_metrics FROM bias_assessments
WHERE model_id = ?
ORDER BY assessment_date DESC
LIMIT 1
""", (model_id,))
row = cursor.fetchone()
conn.close()
if row:
return json.loads(row[0])
return {}
except Exception as e:
self.logger.error("Failed to retrieve historical fairness metrics", error=str(e))
return {}
async def _identify_affected_groups(self,
current_assessment: BiasAssessment,
historical_metrics: Dict[str, float]) -> List[str]:
"""Identify demographic groups most affected by drift"""
affected_groups = []
# Compare group performance
for group, performance in current_assessment.performance_by_group.items():
# Simplified comparison - in practice would have historical group data
if performance["positive_rate"] < 0.5: # Example threshold
affected_groups.append(group)
return affected_groups
async def _generate_drift_recommendations(self, drift_report: Dict[str, Any]) -> List[str]:
"""Generate recommendations for addressing fairness drift"""
recommendations = []
if drift_report["drift_detected"]:
recommendations.append("Investigate root causes of fairness drift")
recommendations.append("Consider model retraining with recent data")
if drift_report["affected_groups"]:
recommendations.append("Focus remediation efforts on affected demographic groups")
recommendations.append("Implement group-specific bias mitigation techniques")
recommendations.append("Increase frequency of fairness monitoring")
recommendations.append("Review and update fairness constraints")
return recommendations
def get_ethics_dashboard_data(self) -> Dict[str, Any]:
"""Get data for AI ethics dashboard"""
# Summary statistics
total_assessments = len(self.bias_assessments)
compliant_models = sum(
1 for assessment in self.bias_assessments.values()
if assessment.fairness_compliance
)
high_risk_models = sum(
1 for assessment in self.bias_assessments.values()
if assessment.bias_risk_level in ["high", "critical"]
)
# Recent violations
recent_violations = [
v for v in self.ethics_violations
if v.detected_at >= datetime.now() - timedelta(days=7)
]
# Transparency metrics
total_explainability_reports = len(self.explainability_reports)
high_transparency_models = sum(
1 for report in self.explainability_reports.values()
if report.explainability_score >= 0.8
)
return {
"bias_assessment": {
"total_assessments": total_assessments,
"compliant_models": compliant_models,
"compliance_rate": compliant_models / total_assessments if total_assessments > 0 else 0,
"high_risk_models": high_risk_models
},
"explainability": {
"total_reports": total_explainability_reports,
"high_transparency_models": high_transparency_models,
"transparency_rate": high_transparency_models / total_explainability_reports if total_explainability_reports > 0 else 0
},
"violations": {
"recent_violations": len(recent_violations),
"open_violations": sum(1 for v in self.ethics_violations if v.status == "open")
},
"last_updated": datetime.now().isoformat()
}
async def _store_bias_assessment(self, assessment: BiasAssessment):
"""Store bias assessment in database"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("""
INSERT OR REPLACE INTO bias_assessments
(assessment_id, model_id, assessment_date, bias_scores, fairness_metrics,
demographic_groups, performance_by_group, assessment_method, confidence_level,
recommendations, bias_risk_level, fairness_compliance, requires_intervention)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
assessment.assessment_id,
assessment.model_id,
assessment.assessment_date.isoformat(),
json.dumps({k.value: v for k, v in assessment.bias_scores.items()}),
json.dumps({k.value: v for k, v in assessment.fairness_metrics.items()}),
json.dumps(assessment.demographic_groups),
json.dumps(assessment.performance_by_group),
assessment.assessment_method,
assessment.confidence_level,
json.dumps(assessment.recommendations),
assessment.bias_risk_level,
assessment.fairness_compliance,
assessment.requires_intervention
))
conn.commit()
conn.close()
except Exception as e:
self.logger.error("Failed to store bias assessment", error=str(e))
async def _store_explainability_report(self, report: ExplainabilityReport):
"""Store explainability report in database"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("""
INSERT OR REPLACE INTO explainability_reports
(report_id, model_id, generated_at, transparency_level, explainability_score,
global_feature_importance, local_explanations_available, explanation_methods,
explanation_quality, user_satisfaction_score)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
report.report_id,
report.model_id,
report.generated_at.isoformat(),
report.transparency_level.value,
report.explainability_score,
json.dumps(report.global_feature_importance),
report.local_explanations_available,
json.dumps(report.explanation_methods),
json.dumps(report.explanation_quality),
report.user_satisfaction_score
))
conn.commit()
conn.close()
except Exception as e:
self.logger.error("Failed to store explainability report", error=str(e))
async def _store_fairness_monitoring_record(self, drift_report: Dict[str, Any]):
"""Store fairness monitoring record"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
for metric_name, metric_data in drift_report["drift_metrics"].items():
cursor.execute("""
INSERT INTO fairness_monitoring
(model_id, metric_name, metric_value, threshold_violated, drift_detected)
VALUES (?, ?, ?, ?, ?)
""", (
drift_report["model_id"],
metric_name,
metric_data["current_value"],
metric_data["drift_detected"],
drift_report["drift_detected"]
))
conn.commit()
conn.close()
except Exception as e:
self.logger.error("Failed to store fairness monitoring record", error=str(e))
# Factory function
def create_ai_ethics_manager(**kwargs) -> AIEthicsManager:
"""Create AI ethics manager with configuration"""
return AIEthicsManager(**kwargs)