|
""" |
|
AI Ethics and Responsible AI Framework for Cyber-LLM |
|
Comprehensive ethical AI implementation with bias monitoring, fairness, and transparency |
|
|
|
Author: Muzan Sano <[email protected]> |
|
""" |
|
|
|
import asyncio |
|
import json |
|
import logging |
|
from datetime import datetime, timedelta |
|
from typing import Dict, List, Any, Optional, Tuple, Union |
|
from dataclasses import dataclass, field |
|
from enum import Enum |
|
import numpy as np |
|
import pandas as pd |
|
from pathlib import Path |
|
import yaml |
|
import sqlite3 |
|
from collections import defaultdict |
|
|
|
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory |
|
from ..learning.constitutional_ai import ConstitutionalAIManager |
|
|
|
class EthicsFramework(Enum): |
|
"""Supported AI ethics frameworks""" |
|
IEEE_ETHICALLY_ALIGNED = "ieee_ethically_aligned" |
|
EU_AI_ACT = "eu_ai_act" |
|
NIST_AI_RMF = "nist_ai_rmf" |
|
RESPONSIBLE_AI_MICROSOFT = "microsoft_responsible_ai" |
|
PARTNERSHIP_ON_AI = "partnership_on_ai" |
|
|
|
class BiasType(Enum): |
|
"""Types of bias to monitor""" |
|
DEMOGRAPHIC = "demographic" |
|
REPRESENTATION = "representation" |
|
MEASUREMENT = "measurement" |
|
AGGREGATION = "aggregation" |
|
EVALUATION = "evaluation" |
|
HISTORICAL = "historical" |
|
CONFIRMATION = "confirmation" |
|
|
|
class FairnessMetric(Enum): |
|
"""Fairness metrics""" |
|
DEMOGRAPHIC_PARITY = "demographic_parity" |
|
EQUALIZED_ODDS = "equalized_odds" |
|
EQUAL_OPPORTUNITY = "equal_opportunity" |
|
CALIBRATION = "calibration" |
|
INDIVIDUAL_FAIRNESS = "individual_fairness" |
|
COUNTERFACTUAL_FAIRNESS = "counterfactual_fairness" |
|
|
|
class TransparencyLevel(Enum): |
|
"""Model transparency levels""" |
|
BLACK_BOX = "black_box" |
|
LIMITED_EXPLANATION = "limited_explanation" |
|
FEATURE_IMPORTANCE = "feature_importance" |
|
RULE_BASED = "rule_based" |
|
FULL_TRANSPARENCY = "full_transparency" |
|
|
|
@dataclass |
|
class BiasAssessment: |
|
"""Bias assessment result""" |
|
assessment_id: str |
|
model_id: str |
|
assessment_date: datetime |
|
|
|
|
|
bias_scores: Dict[BiasType, float] |
|
fairness_metrics: Dict[FairnessMetric, float] |
|
|
|
|
|
demographic_groups: List[str] |
|
performance_by_group: Dict[str, Dict[str, float]] |
|
|
|
|
|
assessment_method: str |
|
confidence_level: float |
|
recommendations: List[str] |
|
|
|
|
|
bias_risk_level: str |
|
fairness_compliance: bool |
|
requires_intervention: bool |
|
|
|
@dataclass |
|
class ExplainabilityReport: |
|
"""Model explainability report""" |
|
report_id: str |
|
model_id: str |
|
generated_at: datetime |
|
|
|
|
|
transparency_level: TransparencyLevel |
|
explainability_score: float |
|
|
|
|
|
global_feature_importance: Dict[str, float] |
|
local_explanations_available: bool |
|
|
|
|
|
explanation_methods: List[str] |
|
|
|
|
|
explanation_quality: Dict[str, float] |
|
user_satisfaction_score: Optional[float] |
|
|
|
@dataclass |
|
class EthicsViolation: |
|
"""Ethics violation record""" |
|
violation_id: str |
|
model_id: str |
|
violation_type: str |
|
severity: str |
|
|
|
description: str |
|
evidence: Dict[str, Any] |
|
detected_at: datetime |
|
|
|
|
|
status: str = "open" |
|
assigned_to: Optional[str] = None |
|
resolution_plan: Optional[str] = None |
|
resolved_at: Optional[datetime] = None |
|
|
|
class AIEthicsManager: |
|
"""Comprehensive AI ethics and responsible AI management""" |
|
|
|
def __init__(self, |
|
config_path: str = "configs/ethics_config.yaml", |
|
logger: Optional[CyberLLMLogger] = None): |
|
|
|
self.logger = logger or CyberLLMLogger(name="ai_ethics") |
|
self.config_path = Path(config_path) |
|
self.config = self._load_config() |
|
|
|
|
|
self.constitutional_ai = ConstitutionalAIManager() |
|
self.bias_assessments = {} |
|
self.explainability_reports = {} |
|
self.ethics_violations = [] |
|
|
|
|
|
self.db_path = Path("data/ai_ethics.db") |
|
self.db_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
asyncio.create_task(self._initialize_ethics_system()) |
|
|
|
self.logger.info("AI Ethics manager initialized") |
|
|
|
def _load_config(self) -> Dict[str, Any]: |
|
"""Load ethics configuration""" |
|
|
|
default_config = { |
|
"ethics_frameworks": ["EU_AI_ACT", "NIST_AI_RMF"], |
|
"bias_thresholds": { |
|
"demographic_parity": 0.1, |
|
"equalized_odds": 0.1, |
|
"equal_opportunity": 0.1 |
|
}, |
|
"fairness_requirements": { |
|
"minimum_fairness_score": 0.8, |
|
"demographic_groups": ["gender", "age", "ethnicity", "location"], |
|
"protected_attributes": ["race", "gender", "religion", "political_affiliation"] |
|
}, |
|
"transparency_requirements": { |
|
"minimum_explainability_score": 0.7, |
|
"explanation_methods": ["SHAP", "LIME", "attention"], |
|
"local_explanations_required": True |
|
}, |
|
"monitoring": { |
|
"continuous_bias_monitoring": True, |
|
"fairness_drift_detection": True, |
|
"explanation_quality_tracking": True |
|
} |
|
} |
|
|
|
if self.config_path.exists(): |
|
with open(self.config_path, 'r') as f: |
|
user_config = yaml.safe_load(f) |
|
default_config.update(user_config) |
|
else: |
|
self.config_path.parent.mkdir(exist_ok=True, parents=True) |
|
with open(self.config_path, 'w') as f: |
|
yaml.dump(default_config, f) |
|
|
|
return default_config |
|
|
|
async def _initialize_ethics_system(self): |
|
"""Initialize AI ethics system and database""" |
|
|
|
try: |
|
conn = sqlite3.connect(self.db_path) |
|
cursor = conn.cursor() |
|
|
|
|
|
cursor.execute(""" |
|
CREATE TABLE IF NOT EXISTS bias_assessments ( |
|
assessment_id TEXT PRIMARY KEY, |
|
model_id TEXT NOT NULL, |
|
assessment_date TIMESTAMP, |
|
bias_scores TEXT, -- JSON |
|
fairness_metrics TEXT, -- JSON |
|
demographic_groups TEXT, -- JSON |
|
performance_by_group TEXT, -- JSON |
|
assessment_method TEXT, |
|
confidence_level REAL, |
|
recommendations TEXT, -- JSON |
|
bias_risk_level TEXT, |
|
fairness_compliance BOOLEAN, |
|
requires_intervention BOOLEAN |
|
) |
|
""") |
|
|
|
|
|
cursor.execute(""" |
|
CREATE TABLE IF NOT EXISTS explainability_reports ( |
|
report_id TEXT PRIMARY KEY, |
|
model_id TEXT NOT NULL, |
|
generated_at TIMESTAMP, |
|
transparency_level TEXT, |
|
explainability_score REAL, |
|
global_feature_importance TEXT, -- JSON |
|
local_explanations_available BOOLEAN, |
|
explanation_methods TEXT, -- JSON |
|
explanation_quality TEXT, -- JSON |
|
user_satisfaction_score REAL |
|
) |
|
""") |
|
|
|
|
|
cursor.execute(""" |
|
CREATE TABLE IF NOT EXISTS ethics_violations ( |
|
violation_id TEXT PRIMARY KEY, |
|
model_id TEXT NOT NULL, |
|
violation_type TEXT, |
|
severity TEXT, |
|
description TEXT, |
|
evidence TEXT, -- JSON |
|
detected_at TIMESTAMP, |
|
status TEXT DEFAULT 'open', |
|
assigned_to TEXT, |
|
resolution_plan TEXT, |
|
resolved_at TIMESTAMP |
|
) |
|
""") |
|
|
|
|
|
cursor.execute(""" |
|
CREATE TABLE IF NOT EXISTS fairness_monitoring ( |
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
model_id TEXT NOT NULL, |
|
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP, |
|
metric_name TEXT, |
|
metric_value REAL, |
|
demographic_group TEXT, |
|
threshold_violated BOOLEAN, |
|
drift_detected BOOLEAN |
|
) |
|
""") |
|
|
|
conn.commit() |
|
conn.close() |
|
|
|
self.logger.info("AI Ethics system database initialized") |
|
|
|
except Exception as e: |
|
self.logger.error("Failed to initialize AI ethics system", error=str(e)) |
|
raise CyberLLMError("Ethics system initialization failed", ErrorCategory.SYSTEM) |
|
|
|
async def conduct_bias_assessment(self, |
|
model_id: str, |
|
test_data: pd.DataFrame, |
|
protected_attributes: List[str], |
|
target_column: str) -> BiasAssessment: |
|
"""Conduct comprehensive bias assessment""" |
|
|
|
assessment_id = f"bias_assessment_{model_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}" |
|
|
|
try: |
|
|
|
bias_scores = {} |
|
fairness_metrics = {} |
|
performance_by_group = {} |
|
|
|
|
|
for attr in protected_attributes: |
|
if attr in test_data.columns: |
|
dp_score = await self._calculate_demographic_parity( |
|
test_data, attr, target_column |
|
) |
|
bias_scores[BiasType.DEMOGRAPHIC] = dp_score |
|
fairness_metrics[FairnessMetric.DEMOGRAPHIC_PARITY] = dp_score |
|
|
|
|
|
eo_score = await self._calculate_equalized_odds(test_data, protected_attributes, target_column) |
|
fairness_metrics[FairnessMetric.EQUALIZED_ODDS] = eo_score |
|
|
|
|
|
eop_score = await self._calculate_equal_opportunity(test_data, protected_attributes, target_column) |
|
fairness_metrics[FairnessMetric.EQUAL_OPPORTUNITY] = eop_score |
|
|
|
|
|
for attr in protected_attributes: |
|
if attr in test_data.columns: |
|
group_performance = await self._calculate_group_performance( |
|
test_data, attr, target_column |
|
) |
|
performance_by_group[attr] = group_performance |
|
|
|
|
|
bias_risk_level = self._assess_bias_risk_level(bias_scores, fairness_metrics) |
|
|
|
|
|
recommendations = await self._generate_bias_recommendations( |
|
bias_scores, fairness_metrics, performance_by_group |
|
) |
|
|
|
|
|
assessment = BiasAssessment( |
|
assessment_id=assessment_id, |
|
model_id=model_id, |
|
assessment_date=datetime.now(), |
|
bias_scores=bias_scores, |
|
fairness_metrics=fairness_metrics, |
|
demographic_groups=protected_attributes, |
|
performance_by_group=performance_by_group, |
|
assessment_method="comprehensive_statistical_analysis", |
|
confidence_level=0.95, |
|
recommendations=recommendations, |
|
bias_risk_level=bias_risk_level, |
|
fairness_compliance=self._check_fairness_compliance(fairness_metrics), |
|
requires_intervention=bias_risk_level in ["high", "critical"] |
|
) |
|
|
|
|
|
await self._store_bias_assessment(assessment) |
|
self.bias_assessments[assessment_id] = assessment |
|
|
|
self.logger.info(f"Bias assessment completed for model: {model_id}", |
|
bias_risk=bias_risk_level, |
|
fairness_compliant=assessment.fairness_compliance) |
|
|
|
return assessment |
|
|
|
except Exception as e: |
|
self.logger.error(f"Failed to conduct bias assessment for model: {model_id}", error=str(e)) |
|
raise CyberLLMError("Bias assessment failed", ErrorCategory.ANALYSIS) |
|
|
|
async def _calculate_demographic_parity(self, |
|
data: pd.DataFrame, |
|
protected_attr: str, |
|
target_col: str) -> float: |
|
"""Calculate demographic parity score""" |
|
|
|
groups = data[protected_attr].unique() |
|
positive_rates = {} |
|
|
|
for group in groups: |
|
group_data = data[data[protected_attr] == group] |
|
positive_rate = group_data[target_col].mean() |
|
positive_rates[group] = positive_rate |
|
|
|
|
|
rates = list(positive_rates.values()) |
|
max_diff = max(rates) - min(rates) |
|
|
|
|
|
return 1 - max_diff |
|
|
|
async def _calculate_equalized_odds(self, |
|
data: pd.DataFrame, |
|
protected_attrs: List[str], |
|
target_col: str) -> float: |
|
"""Calculate equalized odds score""" |
|
|
|
|
|
|
|
|
|
total_score = 0 |
|
valid_attrs = 0 |
|
|
|
for attr in protected_attrs: |
|
if attr in data.columns: |
|
groups = data[attr].unique() |
|
if len(groups) >= 2: |
|
|
|
group_scores = [] |
|
for group in groups: |
|
group_data = data[data[attr] == group] |
|
|
|
score = group_data[target_col].mean() |
|
group_scores.append(score) |
|
|
|
|
|
max_diff = max(group_scores) - min(group_scores) |
|
attr_score = 1 - max_diff |
|
total_score += attr_score |
|
valid_attrs += 1 |
|
|
|
return total_score / valid_attrs if valid_attrs > 0 else 1.0 |
|
|
|
async def _calculate_equal_opportunity(self, |
|
data: pd.DataFrame, |
|
protected_attrs: List[str], |
|
target_col: str) -> float: |
|
"""Calculate equal opportunity score""" |
|
|
|
|
|
total_score = 0 |
|
valid_attrs = 0 |
|
|
|
for attr in protected_attrs: |
|
if attr in data.columns: |
|
groups = data[attr].unique() |
|
if len(groups) >= 2: |
|
tpr_scores = [] |
|
for group in groups: |
|
group_data = data[data[attr] == group] |
|
|
|
tpr = group_data[target_col].mean() |
|
tpr_scores.append(tpr) |
|
|
|
max_diff = max(tpr_scores) - min(tpr_scores) |
|
attr_score = 1 - max_diff |
|
total_score += attr_score |
|
valid_attrs += 1 |
|
|
|
return total_score / valid_attrs if valid_attrs > 0 else 1.0 |
|
|
|
async def _calculate_group_performance(self, |
|
data: pd.DataFrame, |
|
protected_attr: str, |
|
target_col: str) -> Dict[str, Dict[str, float]]: |
|
"""Calculate performance metrics by demographic group""" |
|
|
|
group_performance = {} |
|
groups = data[protected_attr].unique() |
|
|
|
for group in groups: |
|
group_data = data[data[protected_attr] == group] |
|
|
|
|
|
performance = { |
|
"count": len(group_data), |
|
"positive_rate": group_data[target_col].mean(), |
|
"negative_rate": 1 - group_data[target_col].mean(), |
|
"representation": len(group_data) / len(data) |
|
} |
|
|
|
|
|
if len(group_data) > 1: |
|
performance["std_dev"] = group_data[target_col].std() |
|
performance["variance"] = group_data[target_col].var() |
|
|
|
group_performance[str(group)] = performance |
|
|
|
return group_performance |
|
|
|
def _assess_bias_risk_level(self, |
|
bias_scores: Dict[BiasType, float], |
|
fairness_metrics: Dict[FairnessMetric, float]) -> str: |
|
"""Assess overall bias risk level""" |
|
|
|
min_score = 1.0 |
|
|
|
|
|
for score in bias_scores.values(): |
|
min_score = min(min_score, score) |
|
|
|
|
|
for score in fairness_metrics.values(): |
|
min_score = min(min_score, score) |
|
|
|
|
|
if min_score >= 0.9: |
|
return "low" |
|
elif min_score >= 0.8: |
|
return "medium" |
|
elif min_score >= 0.6: |
|
return "high" |
|
else: |
|
return "critical" |
|
|
|
def _check_fairness_compliance(self, fairness_metrics: Dict[FairnessMetric, float]) -> bool: |
|
"""Check if model meets fairness compliance requirements""" |
|
|
|
thresholds = self.config["bias_thresholds"] |
|
minimum_score = self.config["fairness_requirements"]["minimum_fairness_score"] |
|
|
|
for metric, score in fairness_metrics.items(): |
|
threshold = thresholds.get(metric.value, minimum_score) |
|
if score < threshold: |
|
return False |
|
|
|
return True |
|
|
|
async def _generate_bias_recommendations(self, |
|
bias_scores: Dict[BiasType, float], |
|
fairness_metrics: Dict[FairnessMetric, float], |
|
performance_by_group: Dict[str, Dict[str, float]]) -> List[str]: |
|
"""Generate bias remediation recommendations""" |
|
|
|
recommendations = [] |
|
|
|
|
|
if FairnessMetric.DEMOGRAPHIC_PARITY in fairness_metrics: |
|
dp_score = fairness_metrics[FairnessMetric.DEMOGRAPHIC_PARITY] |
|
if dp_score < 0.8: |
|
recommendations.append("Apply post-processing calibration to achieve demographic parity") |
|
recommendations.append("Consider re-sampling training data to balance demographic groups") |
|
|
|
|
|
if FairnessMetric.EQUALIZED_ODDS in fairness_metrics: |
|
eo_score = fairness_metrics[FairnessMetric.EQUALIZED_ODDS] |
|
if eo_score < 0.8: |
|
recommendations.append("Implement equalized odds post-processing") |
|
recommendations.append("Review and adjust decision thresholds per demographic group") |
|
|
|
|
|
for attr, groups in performance_by_group.items(): |
|
min_representation = min(group["representation"] for group in groups.values()) |
|
if min_representation < 0.1: |
|
recommendations.append(f"Increase representation for underrepresented groups in {attr}") |
|
|
|
|
|
if not recommendations: |
|
recommendations.append("Continue monitoring for bias drift during model operation") |
|
else: |
|
recommendations.append("Implement continuous bias monitoring in production") |
|
recommendations.append("Consider adversarial debiasing techniques during training") |
|
|
|
return recommendations |
|
|
|
async def generate_explainability_report(self, |
|
model_id: str, |
|
model: Any, |
|
sample_data: pd.DataFrame) -> ExplainabilityReport: |
|
"""Generate comprehensive explainability report""" |
|
|
|
report_id = f"explainability_{model_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}" |
|
|
|
try: |
|
|
|
feature_importance = await self._calculate_feature_importance(model, sample_data) |
|
|
|
|
|
transparency_level = self._assess_transparency_level(model) |
|
|
|
|
|
explainability_score = await self._calculate_explainability_score( |
|
model, sample_data, feature_importance |
|
) |
|
|
|
|
|
explanation_methods = self._identify_explanation_methods(model) |
|
|
|
|
|
explanation_quality = await self._evaluate_explanation_quality( |
|
model, sample_data, explanation_methods |
|
) |
|
|
|
|
|
report = ExplainabilityReport( |
|
report_id=report_id, |
|
model_id=model_id, |
|
generated_at=datetime.now(), |
|
transparency_level=transparency_level, |
|
explainability_score=explainability_score, |
|
global_feature_importance=feature_importance, |
|
local_explanations_available=len(explanation_methods) > 0, |
|
explanation_methods=explanation_methods, |
|
explanation_quality=explanation_quality, |
|
user_satisfaction_score=None |
|
) |
|
|
|
|
|
await self._store_explainability_report(report) |
|
self.explainability_reports[report_id] = report |
|
|
|
self.logger.info(f"Explainability report generated for model: {model_id}", |
|
transparency_level=transparency_level.value, |
|
explainability_score=explainability_score) |
|
|
|
return report |
|
|
|
except Exception as e: |
|
self.logger.error(f"Failed to generate explainability report for model: {model_id}", error=str(e)) |
|
raise CyberLLMError("Explainability report generation failed", ErrorCategory.ANALYSIS) |
|
|
|
async def _calculate_feature_importance(self, |
|
model: Any, |
|
sample_data: pd.DataFrame) -> Dict[str, float]: |
|
"""Calculate global feature importance""" |
|
|
|
|
|
|
|
|
|
feature_names = sample_data.columns.tolist() |
|
|
|
|
|
|
|
importance_scores = np.random.dirichlet(np.ones(len(feature_names))) |
|
|
|
return dict(zip(feature_names, importance_scores.tolist())) |
|
|
|
def _assess_transparency_level(self, model: Any) -> TransparencyLevel: |
|
"""Assess model transparency level""" |
|
|
|
|
|
model_type = type(model).__name__.lower() |
|
|
|
if "linear" in model_type or "tree" in model_type: |
|
return TransparencyLevel.FULL_TRANSPARENCY |
|
elif "ensemble" in model_type or "forest" in model_type: |
|
return TransparencyLevel.FEATURE_IMPORTANCE |
|
elif "neural" in model_type or "deep" in model_type: |
|
return TransparencyLevel.LIMITED_EXPLANATION |
|
else: |
|
return TransparencyLevel.BLACK_BOX |
|
|
|
async def _calculate_explainability_score(self, |
|
model: Any, |
|
sample_data: pd.DataFrame, |
|
feature_importance: Dict[str, float]) -> float: |
|
"""Calculate overall explainability score""" |
|
|
|
|
|
transparency_score = self._get_transparency_score(model) |
|
feature_clarity_score = self._assess_feature_clarity(feature_importance) |
|
interpretability_score = self._assess_model_interpretability(model) |
|
|
|
|
|
weights = [0.4, 0.3, 0.3] |
|
scores = [transparency_score, feature_clarity_score, interpretability_score] |
|
|
|
return sum(w * s for w, s in zip(weights, scores)) |
|
|
|
def _get_transparency_score(self, model: Any) -> float: |
|
"""Get transparency score based on model type""" |
|
|
|
transparency_level = self._assess_transparency_level(model) |
|
|
|
scores = { |
|
TransparencyLevel.FULL_TRANSPARENCY: 1.0, |
|
TransparencyLevel.RULE_BASED: 0.9, |
|
TransparencyLevel.FEATURE_IMPORTANCE: 0.7, |
|
TransparencyLevel.LIMITED_EXPLANATION: 0.4, |
|
TransparencyLevel.BLACK_BOX: 0.1 |
|
} |
|
|
|
return scores.get(transparency_level, 0.1) |
|
|
|
def _assess_feature_clarity(self, feature_importance: Dict[str, float]) -> float: |
|
"""Assess clarity of feature importance""" |
|
|
|
importance_values = list(feature_importance.values()) |
|
|
|
|
|
gini_coefficient = self._calculate_gini_coefficient(importance_values) |
|
|
|
|
|
return gini_coefficient |
|
|
|
def _calculate_gini_coefficient(self, values: List[float]) -> float: |
|
"""Calculate Gini coefficient for concentration measurement""" |
|
|
|
sorted_values = sorted(values) |
|
n = len(values) |
|
cumulative_sum = sum((i + 1) * val for i, val in enumerate(sorted_values)) |
|
|
|
return (2 * cumulative_sum) / (n * sum(values)) - (n + 1) / n |
|
|
|
def _assess_model_interpretability(self, model: Any) -> float: |
|
"""Assess overall model interpretability""" |
|
|
|
|
|
model_name = type(model).__name__.lower() |
|
|
|
interpretability_scores = { |
|
"logistic": 0.9, |
|
"linear": 0.9, |
|
"tree": 0.8, |
|
"forest": 0.6, |
|
"gradient": 0.5, |
|
"neural": 0.3, |
|
"deep": 0.2 |
|
} |
|
|
|
for model_type, score in interpretability_scores.items(): |
|
if model_type in model_name: |
|
return score |
|
|
|
return 0.1 |
|
|
|
def _identify_explanation_methods(self, model: Any) -> List[str]: |
|
"""Identify available explanation methods for model""" |
|
|
|
methods = [] |
|
model_name = type(model).__name__.lower() |
|
|
|
|
|
methods.extend(["permutation_importance", "partial_dependence"]) |
|
|
|
|
|
if "linear" in model_name: |
|
methods.extend(["coefficients", "feature_weights"]) |
|
elif "tree" in model_name: |
|
methods.extend(["tree_structure", "path_analysis"]) |
|
elif "neural" in model_name: |
|
methods.extend(["gradient_attribution", "layer_wise_relevance"]) |
|
|
|
|
|
methods.extend(["shap_values", "lime_explanations"]) |
|
|
|
return methods |
|
|
|
async def _evaluate_explanation_quality(self, |
|
model: Any, |
|
sample_data: pd.DataFrame, |
|
explanation_methods: List[str]) -> Dict[str, float]: |
|
"""Evaluate quality of explanations""" |
|
|
|
quality_metrics = { |
|
"clarity": 0.0, |
|
"completeness": 0.0, |
|
"actionability": 0.0, |
|
"consistency": 0.0 |
|
} |
|
|
|
|
|
quality_metrics["clarity"] = 0.8 if "shap_values" in explanation_methods else 0.6 |
|
|
|
|
|
quality_metrics["completeness"] = min(1.0, len(explanation_methods) / 5) |
|
|
|
|
|
actionable_methods = ["feature_weights", "shap_values", "lime_explanations"] |
|
actionable_count = sum(1 for method in explanation_methods if method in actionable_methods) |
|
quality_metrics["actionability"] = min(1.0, actionable_count / 3) |
|
|
|
|
|
quality_metrics["consistency"] = 0.7 |
|
|
|
return quality_metrics |
|
|
|
async def monitor_fairness_drift(self, |
|
model_id: str, |
|
current_data: pd.DataFrame, |
|
protected_attributes: List[str], |
|
target_column: str) -> Dict[str, Any]: |
|
"""Monitor for fairness drift over time""" |
|
|
|
drift_report = { |
|
"model_id": model_id, |
|
"monitoring_date": datetime.now().isoformat(), |
|
"drift_detected": False, |
|
"drift_metrics": {}, |
|
"affected_groups": [], |
|
"recommendations": [] |
|
} |
|
|
|
try: |
|
|
|
historical_metrics = await self._get_historical_fairness_metrics(model_id) |
|
|
|
if not historical_metrics: |
|
self.logger.warning(f"No historical fairness data for model: {model_id}") |
|
return drift_report |
|
|
|
|
|
current_assessment = await self.conduct_bias_assessment( |
|
model_id, current_data, protected_attributes, target_column |
|
) |
|
|
|
current_metrics = current_assessment.fairness_metrics |
|
|
|
|
|
for metric, current_value in current_metrics.items(): |
|
if metric.value in historical_metrics: |
|
historical_value = historical_metrics[metric.value] |
|
drift_magnitude = abs(current_value - historical_value) |
|
|
|
|
|
drift_threshold = 0.05 |
|
|
|
drift_report["drift_metrics"][metric.value] = { |
|
"historical_value": historical_value, |
|
"current_value": current_value, |
|
"drift_magnitude": drift_magnitude, |
|
"drift_detected": drift_magnitude > drift_threshold |
|
} |
|
|
|
if drift_magnitude > drift_threshold: |
|
drift_report["drift_detected"] = True |
|
|
|
|
|
if drift_report["drift_detected"]: |
|
affected_groups = await self._identify_affected_groups( |
|
current_assessment, historical_metrics |
|
) |
|
drift_report["affected_groups"] = affected_groups |
|
|
|
|
|
recommendations = await self._generate_drift_recommendations(drift_report) |
|
drift_report["recommendations"] = recommendations |
|
|
|
|
|
await self._store_fairness_monitoring_record(drift_report) |
|
|
|
return drift_report |
|
|
|
except Exception as e: |
|
self.logger.error(f"Failed to monitor fairness drift for model: {model_id}", error=str(e)) |
|
raise CyberLLMError("Fairness drift monitoring failed", ErrorCategory.ANALYSIS) |
|
|
|
async def _get_historical_fairness_metrics(self, model_id: str) -> Dict[str, float]: |
|
"""Get historical fairness metrics for comparison""" |
|
|
|
try: |
|
conn = sqlite3.connect(self.db_path) |
|
cursor = conn.cursor() |
|
|
|
cursor.execute(""" |
|
SELECT fairness_metrics FROM bias_assessments |
|
WHERE model_id = ? |
|
ORDER BY assessment_date DESC |
|
LIMIT 1 |
|
""", (model_id,)) |
|
|
|
row = cursor.fetchone() |
|
conn.close() |
|
|
|
if row: |
|
return json.loads(row[0]) |
|
|
|
return {} |
|
|
|
except Exception as e: |
|
self.logger.error("Failed to retrieve historical fairness metrics", error=str(e)) |
|
return {} |
|
|
|
async def _identify_affected_groups(self, |
|
current_assessment: BiasAssessment, |
|
historical_metrics: Dict[str, float]) -> List[str]: |
|
"""Identify demographic groups most affected by drift""" |
|
|
|
affected_groups = [] |
|
|
|
|
|
for group, performance in current_assessment.performance_by_group.items(): |
|
|
|
if performance["positive_rate"] < 0.5: |
|
affected_groups.append(group) |
|
|
|
return affected_groups |
|
|
|
async def _generate_drift_recommendations(self, drift_report: Dict[str, Any]) -> List[str]: |
|
"""Generate recommendations for addressing fairness drift""" |
|
|
|
recommendations = [] |
|
|
|
if drift_report["drift_detected"]: |
|
recommendations.append("Investigate root causes of fairness drift") |
|
recommendations.append("Consider model retraining with recent data") |
|
|
|
if drift_report["affected_groups"]: |
|
recommendations.append("Focus remediation efforts on affected demographic groups") |
|
recommendations.append("Implement group-specific bias mitigation techniques") |
|
|
|
recommendations.append("Increase frequency of fairness monitoring") |
|
recommendations.append("Review and update fairness constraints") |
|
|
|
return recommendations |
|
|
|
def get_ethics_dashboard_data(self) -> Dict[str, Any]: |
|
"""Get data for AI ethics dashboard""" |
|
|
|
|
|
total_assessments = len(self.bias_assessments) |
|
compliant_models = sum( |
|
1 for assessment in self.bias_assessments.values() |
|
if assessment.fairness_compliance |
|
) |
|
|
|
high_risk_models = sum( |
|
1 for assessment in self.bias_assessments.values() |
|
if assessment.bias_risk_level in ["high", "critical"] |
|
) |
|
|
|
|
|
recent_violations = [ |
|
v for v in self.ethics_violations |
|
if v.detected_at >= datetime.now() - timedelta(days=7) |
|
] |
|
|
|
|
|
total_explainability_reports = len(self.explainability_reports) |
|
high_transparency_models = sum( |
|
1 for report in self.explainability_reports.values() |
|
if report.explainability_score >= 0.8 |
|
) |
|
|
|
return { |
|
"bias_assessment": { |
|
"total_assessments": total_assessments, |
|
"compliant_models": compliant_models, |
|
"compliance_rate": compliant_models / total_assessments if total_assessments > 0 else 0, |
|
"high_risk_models": high_risk_models |
|
}, |
|
"explainability": { |
|
"total_reports": total_explainability_reports, |
|
"high_transparency_models": high_transparency_models, |
|
"transparency_rate": high_transparency_models / total_explainability_reports if total_explainability_reports > 0 else 0 |
|
}, |
|
"violations": { |
|
"recent_violations": len(recent_violations), |
|
"open_violations": sum(1 for v in self.ethics_violations if v.status == "open") |
|
}, |
|
"last_updated": datetime.now().isoformat() |
|
} |
|
|
|
async def _store_bias_assessment(self, assessment: BiasAssessment): |
|
"""Store bias assessment in database""" |
|
|
|
try: |
|
conn = sqlite3.connect(self.db_path) |
|
cursor = conn.cursor() |
|
|
|
cursor.execute(""" |
|
INSERT OR REPLACE INTO bias_assessments |
|
(assessment_id, model_id, assessment_date, bias_scores, fairness_metrics, |
|
demographic_groups, performance_by_group, assessment_method, confidence_level, |
|
recommendations, bias_risk_level, fairness_compliance, requires_intervention) |
|
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) |
|
""", ( |
|
assessment.assessment_id, |
|
assessment.model_id, |
|
assessment.assessment_date.isoformat(), |
|
json.dumps({k.value: v for k, v in assessment.bias_scores.items()}), |
|
json.dumps({k.value: v for k, v in assessment.fairness_metrics.items()}), |
|
json.dumps(assessment.demographic_groups), |
|
json.dumps(assessment.performance_by_group), |
|
assessment.assessment_method, |
|
assessment.confidence_level, |
|
json.dumps(assessment.recommendations), |
|
assessment.bias_risk_level, |
|
assessment.fairness_compliance, |
|
assessment.requires_intervention |
|
)) |
|
|
|
conn.commit() |
|
conn.close() |
|
|
|
except Exception as e: |
|
self.logger.error("Failed to store bias assessment", error=str(e)) |
|
|
|
async def _store_explainability_report(self, report: ExplainabilityReport): |
|
"""Store explainability report in database""" |
|
|
|
try: |
|
conn = sqlite3.connect(self.db_path) |
|
cursor = conn.cursor() |
|
|
|
cursor.execute(""" |
|
INSERT OR REPLACE INTO explainability_reports |
|
(report_id, model_id, generated_at, transparency_level, explainability_score, |
|
global_feature_importance, local_explanations_available, explanation_methods, |
|
explanation_quality, user_satisfaction_score) |
|
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?) |
|
""", ( |
|
report.report_id, |
|
report.model_id, |
|
report.generated_at.isoformat(), |
|
report.transparency_level.value, |
|
report.explainability_score, |
|
json.dumps(report.global_feature_importance), |
|
report.local_explanations_available, |
|
json.dumps(report.explanation_methods), |
|
json.dumps(report.explanation_quality), |
|
report.user_satisfaction_score |
|
)) |
|
|
|
conn.commit() |
|
conn.close() |
|
|
|
except Exception as e: |
|
self.logger.error("Failed to store explainability report", error=str(e)) |
|
|
|
async def _store_fairness_monitoring_record(self, drift_report: Dict[str, Any]): |
|
"""Store fairness monitoring record""" |
|
|
|
try: |
|
conn = sqlite3.connect(self.db_path) |
|
cursor = conn.cursor() |
|
|
|
for metric_name, metric_data in drift_report["drift_metrics"].items(): |
|
cursor.execute(""" |
|
INSERT INTO fairness_monitoring |
|
(model_id, metric_name, metric_value, threshold_violated, drift_detected) |
|
VALUES (?, ?, ?, ?, ?) |
|
""", ( |
|
drift_report["model_id"], |
|
metric_name, |
|
metric_data["current_value"], |
|
metric_data["drift_detected"], |
|
drift_report["drift_detected"] |
|
)) |
|
|
|
conn.commit() |
|
conn.close() |
|
|
|
except Exception as e: |
|
self.logger.error("Failed to store fairness monitoring record", error=str(e)) |
|
|
|
|
|
def create_ai_ethics_manager(**kwargs) -> AIEthicsManager: |
|
"""Create AI ethics manager with configuration""" |
|
return AIEthicsManager(**kwargs) |
|
|