cyber_llm / src /learning /meta_learning.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Meta-Learning System for Cyber-LLM
Enables rapid adaptation to new attack patterns and defense strategies through meta-learning.
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any, Callable
from dataclasses import dataclass, asdict
from enum import Enum
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from collections import defaultdict
import random
from ..utils.logging_system import CyberLLMLogger
from .online_learning import LearningEvent, LearningEventType
# Configure logging
logger = CyberLLMLogger(__name__).get_logger()
class MetaLearningStrategy(Enum):
"""Types of meta-learning strategies"""
MAML = "model_agnostic_meta_learning" # Model-Agnostic Meta-Learning
REPTILE = "reptile" # Reptile algorithm
PROTOTYPICAL = "prototypical_networks" # Prototype-based learning
MEMORY_AUGMENTED = "memory_augmented" # Memory-augmented networks
GRADIENT_BASED = "gradient_based" # Gradient-based meta-learning
class TaskType(Enum):
"""Types of cybersecurity tasks for meta-learning"""
THREAT_CLASSIFICATION = "threat_classification"
ATTACK_PREDICTION = "attack_prediction"
IOC_DETECTION = "ioc_detection"
VULNERABILITY_ASSESSMENT = "vulnerability_assessment"
INCIDENT_RESPONSE = "incident_response"
OPSEC_EVALUATION = "opsec_evaluation"
@dataclass
class MetaTask:
"""Structure for meta-learning tasks"""
task_id: str
task_type: TaskType
name: str
description: str
support_set: List[Dict[str, Any]] # Few examples for learning
query_set: List[Dict[str, Any]] # Examples for evaluation
domain: str # Cybersecurity domain (malware, network, etc.)
difficulty: float # Task difficulty (0-1)
created_at: datetime
metadata: Dict[str, Any]
def __len__(self) -> int:
return len(self.support_set) + len(self.query_set)
class EpisodeBuffer:
"""Buffer for storing meta-learning episodes"""
def __init__(self, capacity: int = 1000):
self.capacity = capacity
self.episodes: List[MetaTask] = []
self.episode_index = 0
def add_episode(self, episode: MetaTask):
"""Add new episode to buffer"""
if len(self.episodes) >= self.capacity:
self.episodes[self.episode_index] = episode
self.episode_index = (self.episode_index + 1) % self.capacity
else:
self.episodes.append(episode)
def sample_episodes(self, batch_size: int) -> List[MetaTask]:
"""Sample batch of episodes for meta-training"""
if len(self.episodes) < batch_size:
return self.episodes.copy()
return random.sample(self.episodes, batch_size)
def get_episodes_by_domain(self, domain: str) -> List[MetaTask]:
"""Get episodes from specific domain"""
return [ep for ep in self.episodes if ep.domain == domain]
def get_episodes_by_type(self, task_type: TaskType) -> List[MetaTask]:
"""Get episodes of specific task type"""
return [ep for ep in self.episodes if ep.task_type == task_type]
class MAMLOptimizer:
"""Model-Agnostic Meta-Learning optimizer"""
def __init__(self,
model: nn.Module,
meta_lr: float = 1e-3,
inner_lr: float = 1e-2,
inner_steps: int = 5):
self.model = model
self.meta_lr = meta_lr
self.inner_lr = inner_lr
self.inner_steps = inner_steps
# Meta-optimizer
self.meta_optimizer = torch.optim.Adam(model.parameters(), lr=meta_lr)
def meta_train_step(self, episode_batch: List[MetaTask]) -> Dict[str, float]:
"""Perform one meta-training step"""
self.meta_optimizer.zero_grad()
total_loss = 0.0
total_accuracy = 0.0
num_tasks = len(episode_batch)
for task in episode_batch:
# Clone model for inner loop
model_copy = self._clone_model()
# Inner loop adaptation
adapted_model, adaptation_loss = self._inner_loop_adaptation(
model_copy, task.support_set
)
# Evaluate on query set
query_loss, query_accuracy = self._evaluate_on_query_set(
adapted_model, task.query_set
)
total_loss += query_loss
total_accuracy += query_accuracy
# Meta-gradient update
avg_loss = total_loss / num_tasks
avg_loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.meta_optimizer.step()
return {
'meta_loss': avg_loss.item(),
'meta_accuracy': total_accuracy / num_tasks,
'num_tasks': num_tasks
}
def _clone_model(self) -> nn.Module:
"""Create a copy of the model for inner loop"""
model_copy = type(self.model)()
model_copy.load_state_dict(self.model.state_dict())
return model_copy
def _inner_loop_adaptation(self,
model: nn.Module,
support_set: List[Dict[str, Any]]) -> Tuple[nn.Module, float]:
"""Perform inner loop adaptation on support set"""
optimizer = torch.optim.SGD(model.parameters(), lr=self.inner_lr)
total_loss = 0.0
for step in range(self.inner_steps):
optimizer.zero_grad()
# Sample batch from support set
batch = random.sample(support_set, min(4, len(support_set)))
# Compute loss
loss = self._compute_task_loss(model, batch)
loss.backward()
optimizer.step()
total_loss += loss.item()
return model, total_loss / self.inner_steps
def _evaluate_on_query_set(self,
model: nn.Module,
query_set: List[Dict[str, Any]]) -> Tuple[torch.Tensor, float]:
"""Evaluate adapted model on query set"""
model.eval()
total_loss = 0.0
correct_predictions = 0
total_predictions = 0
with torch.no_grad():
for query_example in query_set:
loss = self._compute_task_loss(model, [query_example])
total_loss += loss.item()
# Compute accuracy (simplified)
prediction = self._get_prediction(model, query_example)
if prediction == query_example.get('label'):
correct_predictions += 1
total_predictions += 1
accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0.0
return torch.tensor(total_loss / len(query_set)), accuracy
def _compute_task_loss(self, model: nn.Module, batch: List[Dict[str, Any]]) -> torch.Tensor:
"""Compute loss for a task batch"""
# Simplified loss computation - implement actual loss based on task type
return torch.tensor(0.1, requires_grad=True)
def _get_prediction(self, model: nn.Module, example: Dict[str, Any]) -> Any:
"""Get model prediction for an example"""
# Simplified prediction - implement actual inference
return "predicted_label"
class CyberSecurityTaskGenerator:
"""Generates meta-learning tasks from cybersecurity data"""
def __init__(self,
tokenizer,
min_support_size: int = 5,
max_support_size: int = 20,
min_query_size: int = 5,
max_query_size: int = 15):
self.tokenizer = tokenizer
self.min_support_size = min_support_size
self.max_support_size = max_support_size
self.min_query_size = min_query_size
self.max_query_size = max_query_size
# Task templates for different cybersecurity domains
self.task_templates = {
TaskType.THREAT_CLASSIFICATION: self._generate_threat_classification_task,
TaskType.ATTACK_PREDICTION: self._generate_attack_prediction_task,
TaskType.IOC_DETECTION: self._generate_ioc_detection_task,
TaskType.VULNERABILITY_ASSESSMENT: self._generate_vuln_assessment_task,
TaskType.INCIDENT_RESPONSE: self._generate_incident_response_task,
TaskType.OPSEC_EVALUATION: self._generate_opsec_evaluation_task
}
def generate_task_from_events(self,
events: List[LearningEvent],
task_type: TaskType,
domain: str = "general") -> Optional[MetaTask]:
"""Generate meta-learning task from learning events"""
if len(events) < self.min_support_size + self.min_query_size:
logger.warning(f"Insufficient events for task generation: {len(events)}")
return None
try:
# Filter events by relevance to task type
relevant_events = self._filter_events_by_task_type(events, task_type)
if len(relevant_events) < self.min_support_size + self.min_query_size:
return None
# Split into support and query sets
random.shuffle(relevant_events)
support_size = random.randint(self.min_support_size,
min(self.max_support_size, len(relevant_events) // 2))
support_events = relevant_events[:support_size]
query_events = relevant_events[support_size:support_size + self.max_query_size]
# Convert events to task format
support_set = [self._event_to_task_example(event, task_type) for event in support_events]
query_set = [self._event_to_task_example(event, task_type) for event in query_events]
# Generate task using appropriate template
generator_func = self.task_templates[task_type]
return generator_func(support_set, query_set, domain)
except Exception as e:
logger.error(f"Error generating task: {str(e)}")
return None
def _filter_events_by_task_type(self,
events: List[LearningEvent],
task_type: TaskType) -> List[LearningEvent]:
"""Filter events relevant to specific task type"""
relevant_event_types = {
TaskType.THREAT_CLASSIFICATION: [
LearningEventType.NEW_THREAT_INTELLIGENCE,
LearningEventType.SECURITY_INCIDENT
],
TaskType.ATTACK_PREDICTION: [
LearningEventType.AGENT_SUCCESS,
LearningEventType.AGENT_FAILURE,
LearningEventType.SECURITY_INCIDENT
],
TaskType.IOC_DETECTION: [
LearningEventType.NEW_THREAT_INTELLIGENCE,
LearningEventType.FALSE_POSITIVE
],
TaskType.OPSEC_EVALUATION: [
LearningEventType.OPSEC_VIOLATION,
LearningEventType.AGENT_SUCCESS
]
}
target_types = relevant_event_types.get(task_type, [])
return [event for event in events if event.event_type in target_types]
def _event_to_task_example(self,
event: LearningEvent,
task_type: TaskType) -> Dict[str, Any]:
"""Convert learning event to task example"""
base_example = {
'id': event.event_id,
'input': self._extract_input_from_event(event, task_type),
'label': self._extract_label_from_event(event, task_type),
'metadata': {
'source': event.source,
'timestamp': event.timestamp.isoformat(),
'confidence': event.confidence,
'priority': event.priority
}
}
return base_example
def _extract_input_from_event(self, event: LearningEvent, task_type: TaskType) -> str:
"""Extract input text from event based on task type"""
if task_type == TaskType.THREAT_CLASSIFICATION:
return event.context.get('threat_description', '')
elif task_type == TaskType.ATTACK_PREDICTION:
return f"Context: {event.context.get('context', '')} Previous actions: {event.context.get('actions', [])}"
elif task_type == TaskType.IOC_DETECTION:
return event.context.get('network_data', '') + " " + event.context.get('log_data', '')
elif task_type == TaskType.OPSEC_EVALUATION:
return f"Query: {event.context.get('query', '')} Response: {event.context.get('response', '')}"
else:
return json.dumps(event.context)
def _extract_label_from_event(self, event: LearningEvent, task_type: TaskType) -> str:
"""Extract label from event based on task type"""
if task_type == TaskType.THREAT_CLASSIFICATION:
return event.context.get('threat_type', 'unknown')
elif task_type == TaskType.ATTACK_PREDICTION:
return "success" if event.event_type == LearningEventType.AGENT_SUCCESS else "failure"
elif task_type == TaskType.IOC_DETECTION:
return "positive" if event.event_type == LearningEventType.NEW_THREAT_INTELLIGENCE else "negative"
elif task_type == TaskType.OPSEC_EVALUATION:
return "violation" if event.event_type == LearningEventType.OPSEC_VIOLATION else "safe"
else:
return event.event_type.value
def _generate_threat_classification_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate threat classification meta-task"""
return MetaTask(
task_id=f"threat_class_{datetime.now().timestamp()}",
task_type=TaskType.THREAT_CLASSIFICATION,
name="Threat Classification",
description="Classify cybersecurity threats based on indicators and behavior",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.7,
created_at=datetime.now(),
metadata={
'threat_categories': list(set(ex['label'] for ex in support_set + query_set)),
'num_classes': len(set(ex['label'] for ex in support_set + query_set))
}
)
def _generate_attack_prediction_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate attack prediction meta-task"""
return MetaTask(
task_id=f"attack_pred_{datetime.now().timestamp()}",
task_type=TaskType.ATTACK_PREDICTION,
name="Attack Outcome Prediction",
description="Predict the success/failure of attack strategies",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.8,
created_at=datetime.now(),
metadata={
'prediction_horizon': '1_step',
'success_rate': len([ex for ex in support_set if ex['label'] == 'success']) / len(support_set)
}
)
def _generate_ioc_detection_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate IoC detection meta-task"""
return MetaTask(
task_id=f"ioc_detect_{datetime.now().timestamp()}",
task_type=TaskType.IOC_DETECTION,
name="Indicator of Compromise Detection",
description="Detect indicators of compromise in network/system data",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.6,
created_at=datetime.now(),
metadata={
'ioc_types': ['ip', 'domain', 'hash', 'registry', 'file_path'],
'detection_accuracy_target': 0.95
}
)
def _generate_vuln_assessment_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate vulnerability assessment meta-task"""
return MetaTask(
task_id=f"vuln_assess_{datetime.now().timestamp()}",
task_type=TaskType.VULNERABILITY_ASSESSMENT,
name="Vulnerability Assessment",
description="Assess and prioritize system vulnerabilities",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.75,
created_at=datetime.now(),
metadata={
'severity_levels': ['low', 'medium', 'high', 'critical'],
'assessment_framework': 'CVSS'
}
)
def _generate_incident_response_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate incident response meta-task"""
return MetaTask(
task_id=f"incident_resp_{datetime.now().timestamp()}",
task_type=TaskType.INCIDENT_RESPONSE,
name="Incident Response Planning",
description="Generate appropriate incident response strategies",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.9,
created_at=datetime.now(),
metadata={
'response_phases': ['preparation', 'identification', 'containment', 'eradication', 'recovery'],
'incident_types': list(set(ex.get('metadata', {}).get('incident_type', 'unknown')
for ex in support_set + query_set))
}
)
def _generate_opsec_evaluation_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate OPSEC evaluation meta-task"""
return MetaTask(
task_id=f"opsec_eval_{datetime.now().timestamp()}",
task_type=TaskType.OPSEC_EVALUATION,
name="OPSEC Violation Detection",
description="Evaluate queries and responses for OPSEC violations",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.85,
created_at=datetime.now(),
metadata={
'violation_types': ['information_disclosure', 'attribution_risk', 'capability_exposure'],
'stealth_score_threshold': 0.8
}
)
class MetaLearningManager:
"""Main manager for meta-learning in Cyber-LLM"""
def __init__(self,
model,
tokenizer,
strategy: MetaLearningStrategy = MetaLearningStrategy.MAML,
episode_buffer_size: int = 1000,
meta_batch_size: int = 4):
self.model = model
self.tokenizer = tokenizer
self.strategy = strategy
self.meta_batch_size = meta_batch_size
# Components
self.episode_buffer = EpisodeBuffer(episode_buffer_size)
self.task_generator = CyberSecurityTaskGenerator(tokenizer)
# Strategy-specific optimizers
if strategy == MetaLearningStrategy.MAML:
self.optimizer = MAMLOptimizer(model)
else:
raise NotImplementedError(f"Strategy {strategy} not yet implemented")
# Metrics tracking
self.meta_learning_metrics = {
'total_episodes': 0,
'total_meta_updates': 0,
'average_adaptation_time': 0.0,
'task_performance': defaultdict(list),
'domain_performance': defaultdict(list)
}
logger.info(f"MetaLearningManager initialized with strategy: {strategy.value}")
async def add_learning_episodes(self, events: List[LearningEvent]) -> int:
"""Generate and add meta-learning episodes from events"""
episodes_created = 0
# Group events by potential task types
for task_type in TaskType:
try:
task = self.task_generator.generate_task_from_events(
events, task_type, domain="cybersecurity"
)
if task:
self.episode_buffer.add_episode(task)
episodes_created += 1
logger.info(f"Created meta-task: {task.name} ({task_type.value})")
except Exception as e:
logger.error(f"Error creating task for {task_type}: {str(e)}")
self.meta_learning_metrics['total_episodes'] += episodes_created
return episodes_created
async def meta_train_step(self) -> Dict[str, Any]:
"""Perform one meta-training step"""
# Sample episode batch
episode_batch = self.episode_buffer.sample_episodes(self.meta_batch_size)
if len(episode_batch) < self.meta_batch_size:
logger.warning(f"Insufficient episodes for meta-training: {len(episode_batch)}")
return {'success': False, 'reason': 'insufficient_episodes'}
try:
# Perform meta-training step based on strategy
if self.strategy == MetaLearningStrategy.MAML:
results = self.optimizer.meta_train_step(episode_batch)
else:
raise NotImplementedError(f"Meta-training not implemented for {self.strategy}")
# Update metrics
self.meta_learning_metrics['total_meta_updates'] += 1
# Track performance by task type and domain
for episode in episode_batch:
self.meta_learning_metrics['task_performance'][episode.task_type.value].append(
results.get('meta_accuracy', 0.0)
)
self.meta_learning_metrics['domain_performance'][episode.domain].append(
results.get('meta_accuracy', 0.0)
)
logger.info(f"Meta-training step completed. Meta-loss: {results.get('meta_loss', 0.0):.4f}")
return {
'success': True,
'meta_loss': results.get('meta_loss', 0.0),
'meta_accuracy': results.get('meta_accuracy', 0.0),
'episodes_processed': len(episode_batch)
}
except Exception as e:
logger.error(f"Meta-training step failed: {str(e)}")
return {'success': False, 'error': str(e)}
async def rapid_adaptation(self,
new_task_examples: List[Dict[str, Any]],
task_type: TaskType,
adaptation_steps: int = 5) -> Dict[str, Any]:
"""Rapidly adapt to new task with few examples"""
try:
start_time = datetime.now()
# Create temporary task for adaptation
adaptation_task = MetaTask(
task_id=f"adapt_{datetime.now().timestamp()}",
task_type=task_type,
name=f"Rapid Adaptation - {task_type.value}",
description="Rapid adaptation to new task",
support_set=new_task_examples[:len(new_task_examples)//2],
query_set=new_task_examples[len(new_task_examples)//2:],
domain="adaptation",
difficulty=0.8,
created_at=datetime.now(),
metadata={'adaptation_mode': True}
)
# Perform adaptation using inner loop
if self.strategy == MetaLearningStrategy.MAML:
adapted_model, adaptation_loss = self.optimizer._inner_loop_adaptation(
self.optimizer._clone_model(),
adaptation_task.support_set
)
# Evaluate adaptation
query_loss, query_accuracy = self.optimizer._evaluate_on_query_set(
adapted_model, adaptation_task.query_set
)
adaptation_time = (datetime.now() - start_time).total_seconds()
# Update metrics
self.meta_learning_metrics['average_adaptation_time'] = (
(self.meta_learning_metrics['average_adaptation_time'] *
self.meta_learning_metrics['total_meta_updates'] + adaptation_time) /
(self.meta_learning_metrics['total_meta_updates'] + 1)
)
logger.info(f"Rapid adaptation completed in {adaptation_time:.2f}s. "
f"Query accuracy: {query_accuracy:.4f}")
return {
'success': True,
'adaptation_time': adaptation_time,
'adaptation_loss': adaptation_loss,
'query_accuracy': query_accuracy,
'adapted_model': adapted_model
}
except Exception as e:
logger.error(f"Rapid adaptation failed: {str(e)}")
return {'success': False, 'error': str(e)}
def get_meta_learning_statistics(self) -> Dict[str, Any]:
"""Get comprehensive meta-learning statistics"""
task_performance_summary = {}
for task_type, scores in self.meta_learning_metrics['task_performance'].items():
if scores:
task_performance_summary[task_type] = {
'average_performance': np.mean(scores),
'std_performance': np.std(scores),
'num_episodes': len(scores),
'best_performance': max(scores),
'worst_performance': min(scores)
}
domain_performance_summary = {}
for domain, scores in self.meta_learning_metrics['domain_performance'].items():
if scores:
domain_performance_summary[domain] = {
'average_performance': np.mean(scores),
'std_performance': np.std(scores),
'num_episodes': len(scores)
}
return {
'meta_learning_strategy': self.strategy.value,
'total_episodes': self.meta_learning_metrics['total_episodes'],
'total_meta_updates': self.meta_learning_metrics['total_meta_updates'],
'average_adaptation_time': self.meta_learning_metrics['average_adaptation_time'],
'episodes_in_buffer': len(self.episode_buffer.episodes),
'task_performance': task_performance_summary,
'domain_performance': domain_performance_summary,
'buffer_capacity': self.episode_buffer.capacity
}
async def continuous_meta_learning_loop(self):
"""Continuous meta-learning loop"""
logger.info("Starting continuous meta-learning loop")
while True:
try:
# Perform meta-training if enough episodes available
if len(self.episode_buffer.episodes) >= self.meta_batch_size:
await self.meta_train_step()
# Wait before next iteration
await asyncio.sleep(300) # 5 minutes
except Exception as e:
logger.error(f"Error in meta-learning loop: {str(e)}")
await asyncio.sleep(600) # Wait longer on error
# Factory function
def create_meta_learning_manager(**kwargs) -> MetaLearningManager:
"""Create meta-learning manager with default configuration"""
return MetaLearningManager(**kwargs)