cyber_llm / src /learning /multimodal_learning.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Multimodal Learning System for Cybersecurity
Integration of text, network data, and visual security information
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
import cv2
from typing import Dict, List, Optional, Any, Tuple, Union
from dataclasses import dataclass, asdict
from datetime import datetime
import logging
from abc import ABC, abstractmethod
from PIL import Image
import base64
import io
@dataclass
class TextData:
"""Text-based security data"""
content: str
data_type: str # log, alert, report, email, etc.
metadata: Dict[str, Any]
timestamp: str
source: str
@dataclass
class NetworkData:
"""Network traffic data"""
packet_data: bytes
flow_features: Dict[str, float]
protocol: str
source_ip: str
dest_ip: str
timestamp: str
metadata: Dict[str, Any]
@dataclass
class VisualData:
"""Visual security data"""
image_data: np.ndarray
image_type: str # network_topology, malware_visualization, dashboard_screenshot
features: Dict[str, Any]
timestamp: str
metadata: Dict[str, Any]
@dataclass
class MultimodalSample:
"""Combined multimodal sample"""
sample_id: str
text_data: Optional[TextData]
network_data: Optional[NetworkData]
visual_data: Optional[VisualData]
label: str
confidence: float
timestamp: str
class ModalityEncoder(nn.Module, ABC):
"""Abstract base class for modality encoders"""
@abstractmethod
def forward(self, data: Any) -> torch.Tensor:
pass
@abstractmethod
def get_output_dim(self) -> int:
pass
class TextEncoder(ModalityEncoder):
"""Encoder for text-based security data"""
def __init__(self, vocab_size: int = 10000, embed_dim: int = 256, hidden_dim: int = 512):
super().__init__()
self.embed_dim = embed_dim
self.hidden_dim = hidden_dim
# Text processing layers
self.embedding = nn.Embedding(vocab_size, embed_dim)
self.lstm = nn.LSTM(embed_dim, hidden_dim, batch_first=True, bidirectional=True)
self.attention = nn.MultiheadAttention(hidden_dim * 2, num_heads=8)
self.output_proj = nn.Linear(hidden_dim * 2, hidden_dim)
# Cybersecurity-specific text patterns
self.threat_patterns = nn.Conv1d(hidden_dim * 2, 64, kernel_size=3, padding=1)
self.temporal_patterns = nn.Conv1d(hidden_dim * 2, 64, kernel_size=5, padding=2)
def forward(self, text_tokens: torch.Tensor) -> torch.Tensor:
# text_tokens: [batch_size, seq_len]
embedded = self.embedding(text_tokens) # [batch_size, seq_len, embed_dim]
# LSTM encoding
lstm_out, (h_n, c_n) = self.lstm(embedded) # [batch_size, seq_len, hidden_dim * 2]
# Self-attention for important security keywords
attn_out, _ = self.attention(
lstm_out.transpose(0, 1),
lstm_out.transpose(0, 1),
lstm_out.transpose(0, 1)
)
attn_out = attn_out.transpose(0, 1) # [batch_size, seq_len, hidden_dim * 2]
# Pattern detection
lstm_transposed = lstm_out.transpose(1, 2) # [batch_size, hidden_dim * 2, seq_len]
threat_features = F.relu(self.threat_patterns(lstm_transposed))
temporal_features = F.relu(self.temporal_patterns(lstm_transposed))
# Global pooling
threat_pooled = F.adaptive_avg_pool1d(threat_features, 1).squeeze(-1)
temporal_pooled = F.adaptive_avg_pool1d(temporal_features, 1).squeeze(-1)
# Combine features
combined = torch.cat([
attn_out.mean(dim=1), # Attention-weighted average
threat_pooled,
temporal_pooled
], dim=1)
output = self.output_proj(combined[:, :self.hidden_dim * 2])
return F.relu(output)
def get_output_dim(self) -> int:
return self.hidden_dim
class NetworkEncoder(ModalityEncoder):
"""Encoder for network traffic data"""
def __init__(self, flow_feature_dim: int = 50, packet_embed_dim: int = 128, hidden_dim: int = 512):
super().__init__()
self.flow_feature_dim = flow_feature_dim
self.packet_embed_dim = packet_embed_dim
self.hidden_dim = hidden_dim
# Flow feature processing
self.flow_encoder = nn.Sequential(
nn.Linear(flow_feature_dim, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 256),
nn.ReLU()
)
# Packet sequence processing (treat packets as sequences)
self.packet_embedding = nn.Embedding(256, packet_embed_dim) # For packet bytes
self.packet_conv1d = nn.Conv1d(packet_embed_dim, 128, kernel_size=3, padding=1)
self.packet_conv2d = nn.Conv1d(128, 64, kernel_size=5, padding=2)
# Protocol-specific layers
self.protocol_embedding = nn.Embedding(10, 32) # Common protocols
# Temporal analysis
self.temporal_conv = nn.Conv1d(256 + 64 + 32, 128, kernel_size=3, padding=1)
# Output projection
self.output_proj = nn.Linear(128 + 256, hidden_dim)
def forward(self, network_data: Dict[str, torch.Tensor]) -> torch.Tensor:
# Extract components
flow_features = network_data['flow_features'] # [batch_size, flow_feature_dim]
packet_bytes = network_data['packet_bytes'] # [batch_size, max_packet_len]
protocol_ids = network_data['protocol_ids'] # [batch_size]
# Process flow features
flow_encoded = self.flow_encoder(flow_features) # [batch_size, 256]
# Process packet data
packet_embedded = self.packet_embedding(packet_bytes) # [batch_size, max_packet_len, packet_embed_dim]
packet_transposed = packet_embedded.transpose(1, 2) # [batch_size, packet_embed_dim, max_packet_len]
packet_conv1 = F.relu(self.packet_conv1d(packet_transposed))
packet_conv2 = F.relu(self.packet_conv2d(packet_conv1))
packet_pooled = F.adaptive_avg_pool1d(packet_conv2, 1).squeeze(-1) # [batch_size, 64]
# Process protocol information
protocol_embedded = self.protocol_embedding(protocol_ids) # [batch_size, 32]
# Combine features for temporal analysis
combined_features = torch.cat([
flow_encoded, packet_pooled, protocol_embedded
], dim=1).unsqueeze(-1) # [batch_size, 256+64+32, 1]
temporal_features = F.relu(self.temporal_conv(combined_features))
temporal_pooled = temporal_features.squeeze(-1) # [batch_size, 128]
# Final combination
final_features = torch.cat([temporal_pooled, flow_encoded], dim=1)
output = self.output_proj(final_features)
return F.relu(output)
def get_output_dim(self) -> int:
return self.hidden_dim
class VisualEncoder(ModalityEncoder):
"""Encoder for visual security data"""
def __init__(self, hidden_dim: int = 512):
super().__init__()
self.hidden_dim = hidden_dim
# Convolutional layers for image processing
self.conv_layers = nn.Sequential(
# First block
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2),
# Second block
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2, 2),
# Third block
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2, 2),
# Fourth block
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.AdaptiveAvgPool2d((7, 7))
)
# Specialized layers for security visualization patterns
self.topology_detector = nn.Conv2d(512, 64, kernel_size=1)
self.anomaly_detector = nn.Conv2d(512, 64, kernel_size=1)
self.threat_indicator_detector = nn.Conv2d(512, 64, kernel_size=1)
# Final projection
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
self.output_proj = nn.Linear(512 + 64 * 3, hidden_dim)
def forward(self, image_data: torch.Tensor) -> torch.Tensor:
# image_data: [batch_size, 3, height, width]
# Convolutional feature extraction
conv_features = self.conv_layers(image_data) # [batch_size, 512, 7, 7]
# Security-specific pattern detection
topology_features = F.relu(self.topology_detector(conv_features))
anomaly_features = F.relu(self.anomaly_detector(conv_features))
threat_features = F.relu(self.threat_indicator_detector(conv_features))
# Global pooling for all features
conv_pooled = self.global_pool(conv_features).view(conv_features.size(0), -1)
topology_pooled = self.global_pool(topology_features).view(topology_features.size(0), -1)
anomaly_pooled = self.global_pool(anomaly_features).view(anomaly_features.size(0), -1)
threat_pooled = self.global_pool(threat_features).view(threat_features.size(0), -1)
# Combine all features
combined_features = torch.cat([
conv_pooled, topology_pooled, anomaly_pooled, threat_pooled
], dim=1)
output = self.output_proj(combined_features)
return F.relu(output)
def get_output_dim(self) -> int:
return self.hidden_dim
class MultimodalFusionLayer(nn.Module):
"""Fusion layer for combining multimodal features"""
def __init__(self, text_dim: int, network_dim: int, visual_dim: int,
fusion_dim: int = 512, num_heads: int = 8):
super().__init__()
self.text_dim = text_dim
self.network_dim = network_dim
self.visual_dim = visual_dim
self.fusion_dim = fusion_dim
# Projection layers to common dimension
self.text_proj = nn.Linear(text_dim, fusion_dim) if text_dim != fusion_dim else nn.Identity()
self.network_proj = nn.Linear(network_dim, fusion_dim) if network_dim != fusion_dim else nn.Identity()
self.visual_proj = nn.Linear(visual_dim, fusion_dim) if visual_dim != fusion_dim else nn.Identity()
# Cross-modal attention
self.cross_attention = nn.MultiheadAttention(fusion_dim, num_heads, batch_first=True)
# Fusion strategies
self.attention_weights = nn.Parameter(torch.ones(3) / 3) # Learnable weights
# Gate mechanisms
self.text_gate = nn.Sequential(
nn.Linear(fusion_dim, fusion_dim // 4),
nn.ReLU(),
nn.Linear(fusion_dim // 4, 1),
nn.Sigmoid()
)
self.network_gate = nn.Sequential(
nn.Linear(fusion_dim, fusion_dim // 4),
nn.ReLU(),
nn.Linear(fusion_dim // 4, 1),
nn.Sigmoid()
)
self.visual_gate = nn.Sequential(
nn.Linear(fusion_dim, fusion_dim // 4),
nn.ReLU(),
nn.Linear(fusion_dim // 4, 1),
nn.Sigmoid()
)
# Final fusion
self.fusion_network = nn.Sequential(
nn.Linear(fusion_dim, fusion_dim),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(fusion_dim, fusion_dim)
)
def forward(self, text_features: Optional[torch.Tensor] = None,
network_features: Optional[torch.Tensor] = None,
visual_features: Optional[torch.Tensor] = None) -> torch.Tensor:
available_modalities = []
projected_features = []
# Project features to common dimension
if text_features is not None:
text_proj = self.text_proj(text_features)
available_modalities.append(('text', text_proj))
projected_features.append(text_proj)
if network_features is not None:
network_proj = self.network_proj(network_features)
available_modalities.append(('network', network_proj))
projected_features.append(network_proj)
if visual_features is not None:
visual_proj = self.visual_proj(visual_features)
available_modalities.append(('visual', visual_proj))
projected_features.append(visual_proj)
if not projected_features:
raise ValueError("At least one modality must be provided")
if len(projected_features) == 1:
# Single modality
return self.fusion_network(projected_features[0])
# Stack features for cross-attention
stacked_features = torch.stack(projected_features, dim=1) # [batch_size, num_modalities, fusion_dim]
# Cross-modal attention
attended_features, attention_weights = self.cross_attention(
stacked_features, stacked_features, stacked_features
)
# Apply modality-specific gates
gated_features = []
for i, (modality, features) in enumerate(available_modalities):
if modality == 'text' and text_features is not None:
gate = self.text_gate(features)
gated_features.append(attended_features[:, i] * gate)
elif modality == 'network' and network_features is not None:
gate = self.network_gate(features)
gated_features.append(attended_features[:, i] * gate)
elif modality == 'visual' and visual_features is not None:
gate = self.visual_gate(features)
gated_features.append(attended_features[:, i] * gate)
# Weighted fusion
if len(gated_features) == 2:
weights = F.softmax(self.attention_weights[:2], dim=0)
fused = weights[0] * gated_features[0] + weights[1] * gated_features[1]
elif len(gated_features) == 3:
weights = F.softmax(self.attention_weights, dim=0)
fused = (weights[0] * gated_features[0] +
weights[1] * gated_features[1] +
weights[2] * gated_features[2])
else:
fused = torch.stack(gated_features, dim=1).mean(dim=1)
# Final processing
output = self.fusion_network(fused)
return output
class MultimodalSecurityClassifier(nn.Module):
"""Complete multimodal cybersecurity classifier"""
def __init__(self, num_classes: int, vocab_size: int = 10000,
flow_feature_dim: int = 50, fusion_dim: int = 512):
super().__init__()
self.num_classes = num_classes
# Modality encoders
self.text_encoder = TextEncoder(vocab_size=vocab_size, hidden_dim=fusion_dim)
self.network_encoder = NetworkEncoder(flow_feature_dim=flow_feature_dim, hidden_dim=fusion_dim)
self.visual_encoder = VisualEncoder(hidden_dim=fusion_dim)
# Fusion layer
self.fusion_layer = MultimodalFusionLayer(
text_dim=fusion_dim,
network_dim=fusion_dim,
visual_dim=fusion_dim,
fusion_dim=fusion_dim
)
# Classification head
self.classifier = nn.Sequential(
nn.Linear(fusion_dim, fusion_dim // 2),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(fusion_dim // 2, fusion_dim // 4),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(fusion_dim // 4, num_classes)
)
# Auxiliary classifiers for individual modalities (for training)
self.text_classifier = nn.Linear(fusion_dim, num_classes)
self.network_classifier = nn.Linear(fusion_dim, num_classes)
self.visual_classifier = nn.Linear(fusion_dim, num_classes)
def forward(self, text_tokens: Optional[torch.Tensor] = None,
network_data: Optional[Dict[str, torch.Tensor]] = None,
visual_data: Optional[torch.Tensor] = None,
return_individual_outputs: bool = False) -> Dict[str, torch.Tensor]:
outputs = {}
# Encode individual modalities
text_features = None
network_features = None
visual_features = None
if text_tokens is not None:
text_features = self.text_encoder(text_tokens)
if return_individual_outputs:
outputs['text_logits'] = self.text_classifier(text_features)
if network_data is not None:
network_features = self.network_encoder(network_data)
if return_individual_outputs:
outputs['network_logits'] = self.network_classifier(network_features)
if visual_data is not None:
visual_features = self.visual_encoder(visual_data)
if return_individual_outputs:
outputs['visual_logits'] = self.visual_classifier(visual_features)
# Multimodal fusion
if text_features is not None or network_features is not None or visual_features is not None:
fused_features = self.fusion_layer(text_features, network_features, visual_features)
outputs['fused_logits'] = self.classifier(fused_features)
return outputs
class MultimodalSecuritySystem:
"""Complete multimodal learning system for cybersecurity"""
def __init__(self, num_classes: int = 10, device: str = "cpu"):
self.num_classes = num_classes
self.device = device
# Initialize model
self.model = MultimodalSecurityClassifier(num_classes=num_classes)
self.model.to(device)
# Data processors
self.text_processor = self._create_text_processor()
self.network_processor = self._create_network_processor()
self.visual_processor = self._create_visual_processor()
# Training state
self.optimizer = None
self.criterion = nn.CrossEntropyLoss()
self.logger = logging.getLogger(__name__)
def _create_text_processor(self):
"""Create text data processor"""
# Simple tokenizer (in production, use proper tokenizer)
def process_text(text_data: TextData) -> torch.Tensor:
# Simple word-based tokenization
words = text_data.content.lower().split()
# Convert to token IDs (simplified)
token_ids = [hash(word) % 10000 for word in words[:512]] # Max 512 tokens
# Pad or truncate
if len(token_ids) < 512:
token_ids.extend([0] * (512 - len(token_ids)))
else:
token_ids = token_ids[:512]
return torch.tensor(token_ids, dtype=torch.long)
return process_text
def _create_network_processor(self):
"""Create network data processor"""
def process_network(network_data: NetworkData) -> Dict[str, torch.Tensor]:
# Process flow features
flow_features = torch.tensor([
network_data.flow_features.get('packet_count', 0),
network_data.flow_features.get('byte_count', 0),
network_data.flow_features.get('duration', 0),
network_data.flow_features.get('avg_packet_size', 0),
network_data.flow_features.get('packets_per_second', 0)
] + [0] * 45, dtype=torch.float32)[:50] # Ensure exactly 50 features
# Process packet bytes (simplified)
packet_bytes = list(network_data.packet_data[:1024]) # First 1024 bytes
if len(packet_bytes) < 1024:
packet_bytes.extend([0] * (1024 - len(packet_bytes)))
packet_tensor = torch.tensor(packet_bytes, dtype=torch.long)
# Protocol mapping (simplified)
protocol_map = {'tcp': 0, 'udp': 1, 'icmp': 2, 'http': 3, 'https': 4}
protocol_id = torch.tensor(
protocol_map.get(network_data.protocol.lower(), 5),
dtype=torch.long
)
return {
'flow_features': flow_features,
'packet_bytes': packet_tensor,
'protocol_ids': protocol_id
}
return process_network
def _create_visual_processor(self):
"""Create visual data processor"""
def process_visual(visual_data: VisualData) -> torch.Tensor:
# Convert numpy array to tensor
if visual_data.image_data.shape[-1] == 3: # RGB
image_tensor = torch.from_numpy(visual_data.image_data).float()
image_tensor = image_tensor.permute(2, 0, 1) # HWC to CHW
else:
# Handle grayscale or other formats
image_tensor = torch.from_numpy(visual_data.image_data).float()
if len(image_tensor.shape) == 2:
image_tensor = image_tensor.unsqueeze(0).repeat(3, 1, 1) # Convert to RGB
# Resize to standard size (simplified)
if image_tensor.shape[1] != 224 or image_tensor.shape[2] != 224:
image_tensor = F.interpolate(
image_tensor.unsqueeze(0), size=(224, 224), mode='bilinear'
).squeeze(0)
# Normalize
image_tensor = image_tensor / 255.0
return image_tensor
return process_visual
def prepare_batch(self, samples: List[MultimodalSample]) -> Dict[str, torch.Tensor]:
"""Prepare a batch of multimodal samples"""
batch = {
'text_tokens': [],
'network_data': {'flow_features': [], 'packet_bytes': [], 'protocol_ids': []},
'visual_data': [],
'labels': [],
'sample_ids': []
}
for sample in samples:
batch['sample_ids'].append(sample.sample_id)
# Process text
if sample.text_data:
text_tokens = self.text_processor(sample.text_data)
batch['text_tokens'].append(text_tokens)
else:
batch['text_tokens'].append(None)
# Process network data
if sample.network_data:
network_processed = self.network_processor(sample.network_data)
batch['network_data']['flow_features'].append(network_processed['flow_features'])
batch['network_data']['packet_bytes'].append(network_processed['packet_bytes'])
batch['network_data']['protocol_ids'].append(network_processed['protocol_ids'])
else:
batch['network_data']['flow_features'].append(None)
batch['network_data']['packet_bytes'].append(None)
batch['network_data']['protocol_ids'].append(None)
# Process visual data
if sample.visual_data:
visual_processed = self.visual_processor(sample.visual_data)
batch['visual_data'].append(visual_processed)
else:
batch['visual_data'].append(None)
# Labels
batch['labels'].append(sample.label)
# Convert to tensors
result = {}
# Text tokens
valid_text = [t for t in batch['text_tokens'] if t is not None]
if valid_text:
result['text_tokens'] = torch.stack(valid_text).to(self.device)
# Network data
valid_flow = [f for f in batch['network_data']['flow_features'] if f is not None]
valid_packets = [p for p in batch['network_data']['packet_bytes'] if p is not None]
valid_protocols = [p for p in batch['network_data']['protocol_ids'] if p is not None]
if valid_flow:
result['network_data'] = {
'flow_features': torch.stack(valid_flow).to(self.device),
'packet_bytes': torch.stack(valid_packets).to(self.device),
'protocol_ids': torch.stack(valid_protocols).to(self.device)
}
# Visual data
valid_visual = [v for v in batch['visual_data'] if v is not None]
if valid_visual:
result['visual_data'] = torch.stack(valid_visual).to(self.device)
# Labels (convert string labels to indices)
label_map = {
'benign': 0, 'malware': 1, 'phishing': 2, 'ddos': 3, 'intrusion': 4,
'lateral_movement': 5, 'data_exfiltration': 6, 'ransomware': 7,
'insider_threat': 8, 'unknown': 9
}
label_indices = [label_map.get(label, 9) for label in batch['labels']]
result['labels'] = torch.tensor(label_indices, dtype=torch.long).to(self.device)
return result
def train_step(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]:
"""Single training step"""
if self.optimizer is None:
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=1e-4)
self.model.train()
self.optimizer.zero_grad()
# Forward pass
outputs = self.model(
text_tokens=batch.get('text_tokens'),
network_data=batch.get('network_data'),
visual_data=batch.get('visual_data'),
return_individual_outputs=True
)
# Calculate losses
losses = {}
total_loss = 0
labels = batch['labels']
# Main fusion loss
if 'fused_logits' in outputs:
fusion_loss = self.criterion(outputs['fused_logits'], labels)
losses['fusion_loss'] = fusion_loss.item()
total_loss += fusion_loss
# Auxiliary losses for individual modalities
aux_weight = 0.3
if 'text_logits' in outputs:
text_loss = self.criterion(outputs['text_logits'], labels)
losses['text_loss'] = text_loss.item()
total_loss += aux_weight * text_loss
if 'network_logits' in outputs:
network_loss = self.criterion(outputs['network_logits'], labels)
losses['network_loss'] = network_loss.item()
total_loss += aux_weight * network_loss
if 'visual_logits' in outputs:
visual_loss = self.criterion(outputs['visual_logits'], labels)
losses['visual_loss'] = visual_loss.item()
total_loss += aux_weight * visual_loss
# Backward pass
total_loss.backward()
self.optimizer.step()
losses['total_loss'] = total_loss.item()
return losses
def predict(self, samples: List[MultimodalSample]) -> List[Dict[str, Any]]:
"""Make predictions on multimodal samples"""
self.model.eval()
batch = self.prepare_batch(samples)
predictions = []
with torch.no_grad():
outputs = self.model(
text_tokens=batch.get('text_tokens'),
network_data=batch.get('network_data'),
visual_data=batch.get('visual_data'),
return_individual_outputs=True
)
# Get predictions from fusion layer
if 'fused_logits' in outputs:
probs = F.softmax(outputs['fused_logits'], dim=1)
pred_classes = torch.argmax(probs, dim=1)
confidence_scores = torch.max(probs, dim=1)[0]
# Class mapping
class_names = [
'benign', 'malware', 'phishing', 'ddos', 'intrusion',
'lateral_movement', 'data_exfiltration', 'ransomware',
'insider_threat', 'unknown'
]
for i, sample in enumerate(samples):
predictions.append({
'sample_id': sample.sample_id,
'predicted_class': class_names[pred_classes[i].item()],
'confidence': confidence_scores[i].item(),
'class_probabilities': {
class_names[j]: probs[i][j].item()
for j in range(len(class_names))
}
})
return predictions
# Example usage and testing
if __name__ == "__main__":
print("๐Ÿ”€ Multimodal Learning System Testing:")
print("=" * 50)
# Initialize system
multimodal_system = MultimodalSecuritySystem(num_classes=10, device="cpu")
# Create sample multimodal data
print("\n๐Ÿ“Š Creating sample multimodal data...")
# Text data sample
text_sample = TextData(
content="suspicious network activity detected from ip 192.168.1.100 attempting connection to external server",
data_type="security_log",
metadata={"source": "ids", "severity": "high"},
timestamp=datetime.now().isoformat(),
source="security_system"
)
# Network data sample
network_sample = NetworkData(
packet_data=b'\x45\x00\x00\x3c\x1c\x46\x40\x00\x40\x06\x00\x00\xc0\xa8\x01\x64' * 64, # Sample packet
flow_features={
"packet_count": 150,
"byte_count": 9600,
"duration": 30.5,
"avg_packet_size": 64,
"packets_per_second": 4.9
},
protocol="tcp",
source_ip="192.168.1.100",
dest_ip="external_server",
timestamp=datetime.now().isoformat(),
metadata={"port": 443, "flags": ["SYN", "ACK"]}
)
# Visual data sample (synthetic network topology)
visual_sample = VisualData(
image_data=np.random.randint(0, 256, (224, 224, 3), dtype=np.uint8),
image_type="network_topology",
features={"nodes": 15, "edges": 23, "anomalous_connections": 2},
timestamp=datetime.now().isoformat(),
metadata={"generated": True, "tool": "network_visualizer"}
)
# Create multimodal samples
samples = [
MultimodalSample(
sample_id="sample_001",
text_data=text_sample,
network_data=network_sample,
visual_data=visual_sample,
label="intrusion",
confidence=0.85,
timestamp=datetime.now().isoformat()
),
MultimodalSample(
sample_id="sample_002",
text_data=text_sample,
network_data=None, # Missing network data
visual_data=visual_sample,
label="malware",
confidence=0.92,
timestamp=datetime.now().isoformat()
),
MultimodalSample(
sample_id="sample_003",
text_data=None, # Missing text data
network_data=network_sample,
visual_data=None, # Missing visual data
label="benign",
confidence=0.78,
timestamp=datetime.now().isoformat()
)
]
# Test batch preparation
print("๐Ÿ”ง Testing batch preparation...")
batch = multimodal_system.prepare_batch(samples)
print(f" Batch components: {list(batch.keys())}")
if 'text_tokens' in batch:
print(f" Text tokens shape: {batch['text_tokens'].shape}")
if 'network_data' in batch:
print(f" Network flow features shape: {batch['network_data']['flow_features'].shape}")
if 'visual_data' in batch:
print(f" Visual data shape: {batch['visual_data'].shape}")
# Test inference
print("\n๐Ÿ”ฎ Testing multimodal inference...")
predictions = multimodal_system.predict(samples)
for pred in predictions:
print(f"\n Sample: {pred['sample_id']}")
print(f" Predicted: {pred['predicted_class']}")
print(f" Confidence: {pred['confidence']:.3f}")
print(f" Top 3 probabilities:")
sorted_probs = sorted(pred['class_probabilities'].items(),
key=lambda x: x[1], reverse=True)[:3]
for class_name, prob in sorted_probs:
print(f" {class_name}: {prob:.3f}")
# Test training step
print("\n๐ŸŽ“ Testing training step...")
losses = multimodal_system.train_step(batch)
print(f" Training losses: {losses}")
print("\nโœ… Multimodal Learning System implemented and tested")
print(f" Model parameters: {sum(p.numel() for p in multimodal_system.model.parameters()):,}")
print(f" Supported modalities: Text, Network, Visual")
print(f" Fusion strategy: Cross-modal attention with learnable gates")