cyber_llm / src /learning /transfer_learning.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Advanced Transfer Learning System for Cybersecurity AI
Implements domain adaptation, multi-task learning, and knowledge transfer capabilities
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
import os
from typing import Dict, List, Optional, Any, Union, Tuple
from dataclasses import dataclass, asdict
from datetime import datetime
import logging
from abc import ABC, abstractmethod
from collections import defaultdict
@dataclass
class TransferLearningConfig:
"""Configuration for transfer learning setup"""
source_domain: str
target_domain: str
transfer_method: str
freeze_layers: List[str]
adaptation_layers: List[str]
learning_rates: Dict[str, float]
loss_weights: Dict[str, float]
@dataclass
class DomainAdaptationResult:
"""Results from domain adaptation"""
source_loss: float
target_loss: float
domain_loss: float
adaptation_score: float
transfer_effectiveness: float
class FeatureExtractor(nn.Module):
"""Base feature extractor for transfer learning"""
def __init__(self, input_size: int, hidden_sizes: List[int], output_size: int):
super().__init__()
layers = []
prev_size = input_size
for hidden_size in hidden_sizes:
layers.extend([
nn.Linear(prev_size, hidden_size),
nn.BatchNorm1d(hidden_size),
nn.ReLU(),
nn.Dropout(0.3)
])
prev_size = hidden_size
layers.append(nn.Linear(prev_size, output_size))
self.network = nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
class DomainClassifier(nn.Module):
"""Domain classifier for adversarial domain adaptation"""
def __init__(self, feature_size: int, hidden_size: int = 128):
super().__init__()
self.classifier = nn.Sequential(
nn.Linear(feature_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(hidden_size, hidden_size // 2),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(hidden_size // 2, 2) # Binary: source vs target domain
)
def forward(self, x):
return self.classifier(x)
class TaskClassifier(nn.Module):
"""Task-specific classifier"""
def __init__(self, feature_size: int, num_classes: int, hidden_size: int = 128):
super().__init__()
self.classifier = nn.Sequential(
nn.Linear(feature_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(hidden_size, num_classes)
)
def forward(self, x):
return self.classifier(x)
class GradientReversalLayer(torch.autograd.Function):
"""Gradient reversal layer for adversarial training"""
@staticmethod
def forward(ctx, x, alpha):
ctx.alpha = alpha
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
return grad_output.neg() * ctx.alpha, None
class TransferLearningModel(nn.Module):
"""Multi-purpose transfer learning model for cybersecurity tasks"""
def __init__(self, config: Dict[str, Any]):
super().__init__()
self.config = config
self.feature_size = config.get('feature_size', 256)
# Feature extractor (shared across domains/tasks)
self.feature_extractor = FeatureExtractor(
input_size=config['input_size'],
hidden_sizes=config.get('hidden_sizes', [512, 256]),
output_size=self.feature_size
)
# Task-specific classifiers
self.task_classifiers = nn.ModuleDict()
for task_name, num_classes in config.get('tasks', {}).items():
self.task_classifiers[task_name] = TaskClassifier(
self.feature_size, num_classes
)
# Domain classifier for domain adaptation
self.domain_classifier = DomainClassifier(self.feature_size)
# Layer freezing setup
self.frozen_layers = set(config.get('frozen_layers', []))
def forward(self, x, task_name: str = None, alpha: float = 0.0):
# Extract features
features = self.feature_extractor(x)
results = {}
# Task classification
if task_name and task_name in self.task_classifiers:
results['task_output'] = self.task_classifiers[task_name](features)
# Domain classification (with gradient reversal)
if alpha > 0:
reversed_features = GradientReversalLayer.apply(features, alpha)
results['domain_output'] = self.domain_classifier(reversed_features)
results['features'] = features
return results
def freeze_layers(self, layer_names: List[str]):
"""Freeze specified layers"""
for name, param in self.named_parameters():
if any(layer_name in name for layer_name in layer_names):
param.requires_grad = False
self.frozen_layers.add(name)
def unfreeze_layers(self, layer_names: List[str]):
"""Unfreeze specified layers"""
for name, param in self.named_parameters():
if any(layer_name in name for layer_name in layer_names):
param.requires_grad = True
self.frozen_layers.discard(name)
class CyberTransferLearning:
"""Advanced transfer learning system for cybersecurity applications"""
def __init__(self, config_path: str = None):
self.config = self._load_config(config_path)
self.models = {}
self.transfer_history = []
self.logger = logging.getLogger(__name__)
# Cybersecurity domain mappings
self.domain_mappings = {
'malware_detection': {
'features': ['file_size', 'entropy', 'api_calls', 'strings'],
'related_domains': ['threat_detection', 'anomaly_detection']
},
'network_intrusion': {
'features': ['packet_size', 'flow_duration', 'protocol', 'ports'],
'related_domains': ['anomaly_detection', 'traffic_analysis']
},
'phishing_detection': {
'features': ['url_features', 'content_features', 'metadata'],
'related_domains': ['malware_detection', 'fraud_detection']
},
'vulnerability_assessment': {
'features': ['code_metrics', 'dependencies', 'patterns'],
'related_domains': ['malware_detection', 'threat_detection']
},
'threat_intelligence': {
'features': ['iocs', 'ttps', 'attribution', 'context'],
'related_domains': ['malware_detection', 'network_intrusion']
}
}
def _load_config(self, config_path: str) -> Dict[str, Any]:
"""Load transfer learning configuration"""
if config_path and os.path.exists(config_path):
with open(config_path, 'r') as f:
return json.load(f)
# Default configuration
return {
'model_configs': {
'malware_detection': {
'input_size': 1024,
'hidden_sizes': [512, 256],
'tasks': {'malware_classification': 10, 'family_detection': 20}
},
'network_intrusion': {
'input_size': 128,
'hidden_sizes': [256, 128],
'tasks': {'intrusion_detection': 2, 'attack_type': 15}
}
},
'transfer_strategies': {
'fine_tuning': {'freeze_ratio': 0.5, 'learning_rate_ratio': 0.1},
'domain_adaptation': {'alpha_schedule': 'progressive', 'max_alpha': 1.0},
'multi_task': {'task_weights': 'adaptive', 'sharing_layers': ['feature_extractor']}
}
}
def create_transfer_model(self, source_domain: str, target_domain: str,
transfer_method: str = 'fine_tuning') -> str:
"""Create a transfer learning model"""
model_id = f"transfer_{source_domain}_to_{target_domain}_{transfer_method}"
# Get model configuration
if target_domain in self.config['model_configs']:
model_config = self.config['model_configs'][target_domain].copy()
else:
# Use source domain config as base
model_config = self.config['model_configs'].get(
source_domain, self.config['model_configs']['malware_detection']
).copy()
# Create model
model = TransferLearningModel(model_config)
# Load pre-trained source model if available
source_model_path = f"/models/{source_domain}_pretrained.pth"
if os.path.exists(source_model_path):
self._load_pretrained_weights(model, source_model_path, source_domain, target_domain)
# Apply transfer learning strategy
if transfer_method == 'fine_tuning':
self._setup_fine_tuning(model, source_domain, target_domain)
elif transfer_method == 'domain_adaptation':
self._setup_domain_adaptation(model, source_domain, target_domain)
elif transfer_method == 'multi_task':
self._setup_multi_task_learning(model, source_domain, target_domain)
self.models[model_id] = {
'model': model,
'source_domain': source_domain,
'target_domain': target_domain,
'transfer_method': transfer_method,
'created_at': datetime.now().isoformat()
}
self.logger.info(f"Created transfer model: {model_id}")
return model_id
def _load_pretrained_weights(self, model: TransferLearningModel,
source_path: str, source_domain: str, target_domain: str):
"""Load pre-trained weights with domain adaptation"""
try:
if os.path.exists(source_path):
checkpoint = torch.load(source_path, map_location='cpu')
# Load compatible weights
model_dict = model.state_dict()
pretrained_dict = {
k: v for k, v in checkpoint.items()
if k in model_dict and v.size() == model_dict[k].size()
}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
self.logger.info(f"Loaded {len(pretrained_dict)} pre-trained layers")
else:
self.logger.warning(f"Pre-trained model not found: {source_path}")
except Exception as e:
self.logger.error(f"Error loading pre-trained weights: {e}")
def _setup_fine_tuning(self, model: TransferLearningModel,
source_domain: str, target_domain: str):
"""Setup fine-tuning strategy"""
strategy = self.config['transfer_strategies']['fine_tuning']
# Freeze lower layers
all_params = list(model.named_parameters())
freeze_count = int(len(all_params) * strategy['freeze_ratio'])
freeze_layers = []
for i, (name, param) in enumerate(all_params):
if i < freeze_count:
freeze_layers.append(name.split('.')[0])
model.freeze_layers(freeze_layers)
def _setup_domain_adaptation(self, model: TransferLearningModel,
source_domain: str, target_domain: str):
"""Setup domain adaptation strategy"""
# Domain adaptation typically doesn't freeze layers initially
# but uses adversarial training instead
pass
def _setup_multi_task_learning(self, model: TransferLearningModel,
source_domain: str, target_domain: str):
"""Setup multi-task learning strategy"""
# Multi-task learning keeps all layers unfrozen
# and learns multiple tasks simultaneously
pass
def adapt_domain(self, model_id: str, source_data: torch.Tensor,
target_data: torch.Tensor, source_labels: torch.Tensor,
target_labels: torch.Tensor = None,
epochs: int = 50) -> DomainAdaptationResult:
"""Perform domain adaptation training"""
if model_id not in self.models:
raise ValueError(f"Model {model_id} not found")
model = self.models[model_id]['model']
model.train()
# Optimizers
feature_optimizer = torch.optim.Adam(
model.feature_extractor.parameters(), lr=1e-4
)
task_optimizer = torch.optim.Adam(
model.task_classifiers.parameters(), lr=1e-4
)
domain_optimizer = torch.optim.Adam(
model.domain_classifier.parameters(), lr=1e-3
)
# Loss functions
task_criterion = nn.CrossEntropyLoss()
domain_criterion = nn.CrossEntropyLoss()
# Training metrics
results = {
'source_losses': [],
'target_losses': [],
'domain_losses': [],
'adaptation_scores': []
}
for epoch in range(epochs):
epoch_source_loss = 0.0
epoch_target_loss = 0.0
epoch_domain_loss = 0.0
# Progressive alpha schedule for gradient reversal
alpha = min(1.0, 2.0 / (1.0 + np.exp(-10 * epoch / epochs)) - 1.0)
# Batch training
batch_size = 32
n_batches = max(len(source_data) // batch_size, len(target_data) // batch_size)
for batch_idx in range(n_batches):
# Get batches
source_start = (batch_idx * batch_size) % len(source_data)
target_start = (batch_idx * batch_size) % len(target_data)
source_batch = source_data[source_start:source_start + batch_size]
source_label_batch = source_labels[source_start:source_start + batch_size]
target_batch = target_data[target_start:target_start + batch_size]
# Create domain labels
source_domain_labels = torch.zeros(len(source_batch), dtype=torch.long)
target_domain_labels = torch.ones(len(target_batch), dtype=torch.long)
# Forward pass - source data
source_results = model(source_batch, task_name='task_classification', alpha=alpha)
# Task loss on source data
if 'task_classification' in model.task_classifiers:
task_loss = task_criterion(
source_results['task_output'], source_label_batch
)
else:
# Use first available task
first_task = next(iter(model.task_classifiers.keys()))
source_results = model(source_batch, task_name=first_task, alpha=alpha)
task_loss = task_criterion(
source_results['task_output'], source_label_batch
)
# Domain loss on both source and target
combined_features = torch.cat([
source_results['features'],
model(target_batch, alpha=alpha)['features']
])
combined_domain_labels = torch.cat([
source_domain_labels, target_domain_labels
])
reversed_features = GradientReversalLayer.apply(combined_features, alpha)
domain_output = model.domain_classifier(reversed_features)
domain_loss = domain_criterion(domain_output, combined_domain_labels)
# Backward pass
feature_optimizer.zero_grad()
task_optimizer.zero_grad()
domain_optimizer.zero_grad()
total_loss = task_loss + domain_loss
total_loss.backward()
feature_optimizer.step()
task_optimizer.step()
domain_optimizer.step()
epoch_source_loss += task_loss.item()
epoch_domain_loss += domain_loss.item()
# Target loss (if target labels available)
if target_labels is not None:
target_start_label = (batch_idx * batch_size) % len(target_labels)
target_label_batch = target_labels[target_start_label:target_start_label + batch_size]
target_results = model(target_batch, task_name=first_task)
target_loss = task_criterion(
target_results['task_output'], target_label_batch
)
epoch_target_loss += target_loss.item()
# Record epoch metrics
avg_source_loss = epoch_source_loss / n_batches
avg_target_loss = epoch_target_loss / n_batches if target_labels is not None else 0.0
avg_domain_loss = epoch_domain_loss / n_batches
results['source_losses'].append(avg_source_loss)
results['target_losses'].append(avg_target_loss)
results['domain_losses'].append(avg_domain_loss)
# Calculate adaptation score (domain confusion)
adaptation_score = 1.0 - (avg_domain_loss / np.log(2)) # Normalized by random chance
results['adaptation_scores'].append(adaptation_score)
if epoch % 10 == 0:
self.logger.info(
f"Epoch {epoch}: Source Loss {avg_source_loss:.4f}, "
f"Domain Loss {avg_domain_loss:.4f}, "
f"Adaptation Score {adaptation_score:.4f}"
)
# Calculate final results
final_result = DomainAdaptationResult(
source_loss=np.mean(results['source_losses'][-5:]),
target_loss=np.mean(results['target_losses'][-5:]) if results['target_losses'] else 0.0,
domain_loss=np.mean(results['domain_losses'][-5:]),
adaptation_score=np.mean(results['adaptation_scores'][-5:]),
transfer_effectiveness=self._calculate_transfer_effectiveness(results)
)
# Store adaptation history
self.transfer_history.append({
'model_id': model_id,
'adaptation_result': asdict(final_result),
'training_curves': results,
'timestamp': datetime.now().isoformat()
})
return final_result
def _calculate_transfer_effectiveness(self, results: Dict[str, List[float]]) -> float:
"""Calculate transfer learning effectiveness score"""
if not results['source_losses']:
return 0.0
# Measure improvement over training
initial_loss = np.mean(results['source_losses'][:5])
final_loss = np.mean(results['source_losses'][-5:])
# Measure domain adaptation quality
final_adaptation = np.mean(results['adaptation_scores'][-5:])
# Combine metrics (higher is better)
improvement_ratio = max(0, (initial_loss - final_loss) / initial_loss)
effectiveness = (improvement_ratio + final_adaptation) / 2.0
return min(1.0, max(0.0, effectiveness))
def get_transfer_recommendations(self, target_domain: str,
available_domains: List[str] = None) -> List[Dict[str, Any]]:
"""Get recommendations for transfer learning sources"""
if available_domains is None:
available_domains = list(self.domain_mappings.keys())
recommendations = []
if target_domain not in self.domain_mappings:
return recommendations
target_info = self.domain_mappings[target_domain]
for source_domain in available_domains:
if source_domain == target_domain:
continue
if source_domain not in self.domain_mappings:
continue
source_info = self.domain_mappings[source_domain]
# Calculate similarity score
feature_overlap = len(
set(target_info['features']) & set(source_info['features'])
) / len(set(target_info['features']) | set(source_info['features']))
domain_relatedness = 1.0 if source_domain in target_info['related_domains'] else 0.5
similarity_score = (feature_overlap + domain_relatedness) / 2.0
# Recommend transfer method based on similarity
if similarity_score > 0.7:
recommended_method = 'fine_tuning'
expected_improvement = '20-40%'
elif similarity_score > 0.4:
recommended_method = 'domain_adaptation'
expected_improvement = '10-25%'
else:
recommended_method = 'multi_task'
expected_improvement = '5-15%'
recommendations.append({
'source_domain': source_domain,
'similarity_score': similarity_score,
'recommended_method': recommended_method,
'expected_improvement': expected_improvement,
'feature_overlap': feature_overlap,
'domain_relatedness': domain_relatedness
})
# Sort by similarity score
recommendations.sort(key=lambda x: x['similarity_score'], reverse=True)
return recommendations
def evaluate_transfer_performance(self, model_id: str, test_data: torch.Tensor,
test_labels: torch.Tensor, task_name: str = None) -> Dict[str, float]:
"""Evaluate transfer learning model performance"""
if model_id not in self.models:
raise ValueError(f"Model {model_id} not found")
model = self.models[model_id]['model']
model.eval()
metrics = {}
with torch.no_grad():
# Get predictions
if task_name is None:
task_name = next(iter(model.task_classifiers.keys()))
results = model(test_data, task_name=task_name)
predictions = torch.argmax(results['task_output'], dim=1)
# Calculate metrics
accuracy = (predictions == test_labels).float().mean().item()
# Convert to numpy for sklearn metrics
predictions_np = predictions.cpu().numpy()
labels_np = test_labels.cpu().numpy()
# Calculate additional metrics
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
precision = precision_score(labels_np, predictions_np, average='weighted', zero_division=0)
recall = recall_score(labels_np, predictions_np, average='weighted', zero_division=0)
f1 = f1_score(labels_np, predictions_np, average='weighted', zero_division=0)
metrics = {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1_score': f1,
'num_samples': len(test_labels)
}
return metrics
def save_model(self, model_id: str, path: str):
"""Save transfer learning model"""
if model_id not in self.models:
raise ValueError(f"Model {model_id} not found")
model_info = self.models[model_id]
checkpoint = {
'model_state_dict': model_info['model'].state_dict(),
'model_config': model_info,
'transfer_history': [
h for h in self.transfer_history if h['model_id'] == model_id
]
}
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save(checkpoint, path)
self.logger.info(f"Saved transfer model to {path}")
def get_transfer_summary(self) -> Dict[str, Any]:
"""Get summary of transfer learning activities"""
summary = {
'total_models': len(self.models),
'transfer_methods_used': set(),
'domain_pairs': set(),
'average_effectiveness': 0.0,
'successful_transfers': 0,
'generated_at': datetime.now().isoformat()
}
effectiveness_scores = []
for model_id, model_info in self.models.items():
summary['transfer_methods_used'].add(model_info['transfer_method'])
summary['domain_pairs'].add(
f"{model_info['source_domain']} β†’ {model_info['target_domain']}"
)
# Find effectiveness scores from history
for history in self.transfer_history:
if history['model_id'] == model_id:
effectiveness = history['adaptation_result'].get('transfer_effectiveness', 0.0)
effectiveness_scores.append(effectiveness)
if effectiveness > 0.3: # Threshold for success
summary['successful_transfers'] += 1
if effectiveness_scores:
summary['average_effectiveness'] = np.mean(effectiveness_scores)
# Convert sets to lists for JSON serialization
summary['transfer_methods_used'] = list(summary['transfer_methods_used'])
summary['domain_pairs'] = list(summary['domain_pairs'])
return summary
# Example usage and testing
if __name__ == "__main__":
print("πŸ”„ Transfer Learning System Testing:")
print("=" * 50)
# Initialize transfer learning system
transfer_system = CyberTransferLearning()
# Get transfer recommendations
print("\nπŸ“‹ Transfer Learning Recommendations:")
recommendations = transfer_system.get_transfer_recommendations('phishing_detection')
for rec in recommendations[:3]:
print(f" Source: {rec['source_domain']}")
print(f" Similarity: {rec['similarity_score']:.3f}")
print(f" Method: {rec['recommended_method']}")
print(f" Expected Improvement: {rec['expected_improvement']}")
print()
# Create transfer models
print("πŸ—οΈ Creating transfer models...")
model_id = transfer_system.create_transfer_model(
'malware_detection',
'phishing_detection',
'domain_adaptation'
)
# Generate synthetic data for testing
print("\nπŸ§ͺ Testing with synthetic data...")
source_data = torch.randn(1000, 1024)
source_labels = torch.randint(0, 10, (1000,))
target_data = torch.randn(500, 1024)
target_labels = torch.randint(0, 10, (500,))
# Perform domain adaptation
print("🎯 Performing domain adaptation...")
adaptation_result = transfer_system.adapt_domain(
model_id, source_data, target_data, source_labels, target_labels, epochs=20
)
print(f" Source Loss: {adaptation_result.source_loss:.4f}")
print(f" Domain Loss: {adaptation_result.domain_loss:.4f}")
print(f" Adaptation Score: {adaptation_result.adaptation_score:.4f}")
print(f" Transfer Effectiveness: {adaptation_result.transfer_effectiveness:.4f}")
# Evaluate performance
print("\nπŸ“Š Evaluating model performance...")
test_data = torch.randn(200, 1024)
test_labels = torch.randint(0, 10, (200,))
performance = transfer_system.evaluate_transfer_performance(
model_id, test_data, test_labels
)
print(f" Accuracy: {performance['accuracy']:.3f}")
print(f" F1 Score: {performance['f1_score']:.3f}")
print(f" Precision: {performance['precision']:.3f}")
print(f" Recall: {performance['recall']:.3f}")
# Get transfer summary
print("\nπŸ“ˆ Transfer Learning Summary:")
summary = transfer_system.get_transfer_summary()
print(f" Total Models: {summary['total_models']}")
print(f" Successful Transfers: {summary['successful_transfers']}")
print(f" Average Effectiveness: {summary['average_effectiveness']:.3f}")
print(f" Methods Used: {', '.join(summary['transfer_methods_used'])}")
print("\nβœ… Transfer Learning System implemented and tested")