cyber_llm / src /mlops /experiment_tracker.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
MLOps Experiment Tracking and Management System
Comprehensive experiment tracking, versioning, and analysis for cybersecurity AI models
"""
import json
import sqlite3
import hashlib
import uuid
import os
import pickle
from datetime import datetime
from typing import Dict, List, Optional, Any, Union, Tuple
from dataclasses import dataclass, asdict
from contextlib import contextmanager
import numpy as np
import logging
@dataclass
class ExperimentConfig:
"""Configuration for an ML experiment"""
experiment_id: str
name: str
description: str
tags: List[str]
parameters: Dict[str, Any]
model_type: str
dataset_info: Dict[str, Any]
environment_info: Dict[str, Any]
created_at: str
created_by: str
@dataclass
class ExperimentMetrics:
"""Metrics collected during experiment"""
experiment_id: str
step: int
timestamp: str
metrics: Dict[str, float]
validation_metrics: Dict[str, float]
custom_metrics: Dict[str, Any]
@dataclass
class ExperimentArtifact:
"""Artifact associated with an experiment"""
artifact_id: str
experiment_id: str
name: str
type: str # model, dataset, plot, log, etc.
path: str
metadata: Dict[str, Any]
checksum: str
size_bytes: int
created_at: str
@dataclass
class ModelVersion:
"""Model version information"""
version_id: str
experiment_id: str
model_name: str
version: str
status: str # training, validation, deployed, archived
performance_metrics: Dict[str, float]
model_path: str
metadata: Dict[str, Any]
created_at: str
class ExperimentTracker:
"""Comprehensive MLOps experiment tracking system"""
def __init__(self, db_path: str = None):
self.db_path = db_path or "/home/o1/Desktop/cyber_llm/data/mlops/experiments.db"
self.logger = logging.getLogger(__name__)
self._setup_database()
def _setup_database(self):
"""Initialize the experiment tracking database"""
os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
with sqlite3.connect(self.db_path) as conn:
conn.execute('PRAGMA journal_mode=WAL')
# Experiments table
conn.execute('''
CREATE TABLE IF NOT EXISTS experiments (
experiment_id TEXT PRIMARY KEY,
name TEXT NOT NULL,
description TEXT,
tags TEXT, -- JSON array
parameters TEXT, -- JSON object
model_type TEXT,
dataset_info TEXT, -- JSON object
environment_info TEXT, -- JSON object
status TEXT DEFAULT 'active',
created_at TEXT,
created_by TEXT,
updated_at TEXT
)
''')
# Experiment metrics table
conn.execute('''
CREATE TABLE IF NOT EXISTS experiment_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
experiment_id TEXT,
step INTEGER,
timestamp TEXT,
metrics TEXT, -- JSON object
validation_metrics TEXT, -- JSON object
custom_metrics TEXT, -- JSON object
FOREIGN KEY (experiment_id) REFERENCES experiments (experiment_id)
)
''')
# Artifacts table
conn.execute('''
CREATE TABLE IF NOT EXISTS experiment_artifacts (
artifact_id TEXT PRIMARY KEY,
experiment_id TEXT,
name TEXT,
type TEXT,
path TEXT,
metadata TEXT, -- JSON object
checksum TEXT,
size_bytes INTEGER,
created_at TEXT,
FOREIGN KEY (experiment_id) REFERENCES experiments (experiment_id)
)
''')
# Model versions table
conn.execute('''
CREATE TABLE IF NOT EXISTS model_versions (
version_id TEXT PRIMARY KEY,
experiment_id TEXT,
model_name TEXT,
version TEXT,
status TEXT,
performance_metrics TEXT, -- JSON object
model_path TEXT,
metadata TEXT, -- JSON object
created_at TEXT,
deployed_at TEXT,
FOREIGN KEY (experiment_id) REFERENCES experiments (experiment_id)
)
''')
# Experiment comparisons table
conn.execute('''
CREATE TABLE IF NOT EXISTS experiment_comparisons (
comparison_id TEXT PRIMARY KEY,
name TEXT,
experiment_ids TEXT, -- JSON array
comparison_metrics TEXT, -- JSON object
notes TEXT,
created_at TEXT
)
''')
# Create indices for performance
indices = [
'CREATE INDEX IF NOT EXISTS idx_experiments_created_at ON experiments(created_at)',
'CREATE INDEX IF NOT EXISTS idx_experiments_model_type ON experiments(model_type)',
'CREATE INDEX IF NOT EXISTS idx_experiments_tags ON experiments(tags)',
'CREATE INDEX IF NOT EXISTS idx_metrics_experiment_id ON experiment_metrics(experiment_id)',
'CREATE INDEX IF NOT EXISTS idx_metrics_step ON experiment_metrics(step)',
'CREATE INDEX IF NOT EXISTS idx_artifacts_experiment_id ON experiment_artifacts(experiment_id)',
'CREATE INDEX IF NOT EXISTS idx_artifacts_type ON experiment_artifacts(type)',
'CREATE INDEX IF NOT EXISTS idx_model_versions_experiment_id ON model_versions(experiment_id)',
'CREATE INDEX IF NOT EXISTS idx_model_versions_status ON model_versions(status)'
]
for index_sql in indices:
conn.execute(index_sql)
conn.commit()
@contextmanager
def get_db_connection(self):
"""Get database connection with proper cleanup"""
conn = sqlite3.connect(self.db_path)
try:
yield conn
finally:
conn.close()
def create_experiment(self, name: str, description: str = None,
tags: List[str] = None, parameters: Dict[str, Any] = None,
model_type: str = None, dataset_info: Dict[str, Any] = None) -> str:
"""Create a new experiment"""
experiment_id = str(uuid.uuid4())
tags = tags or []
parameters = parameters or {}
dataset_info = dataset_info or {}
# Gather environment information
environment_info = {
"python_version": "3.8+",
"platform": "linux",
"timestamp": datetime.now().isoformat(),
"working_directory": os.getcwd()
}
config = ExperimentConfig(
experiment_id=experiment_id,
name=name,
description=description or "",
tags=tags,
parameters=parameters,
model_type=model_type or "unknown",
dataset_info=dataset_info,
environment_info=environment_info,
created_at=datetime.now().isoformat(),
created_by="cyber_llm_user"
)
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO experiments
(experiment_id, name, description, tags, parameters, model_type,
dataset_info, environment_info, created_at, created_by, updated_at)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
config.experiment_id,
config.name,
config.description,
json.dumps(config.tags),
json.dumps(config.parameters),
config.model_type,
json.dumps(config.dataset_info),
json.dumps(config.environment_info),
config.created_at,
config.created_by,
config.created_at
))
conn.commit()
self.logger.info(f"Created experiment: {experiment_id} - {name}")
return experiment_id
def log_metrics(self, experiment_id: str, metrics: Dict[str, float],
validation_metrics: Dict[str, float] = None,
custom_metrics: Dict[str, Any] = None,
step: int = None) -> None:
"""Log metrics for an experiment"""
if step is None:
# Auto-increment step
with self.get_db_connection() as conn:
cursor = conn.execute(
'SELECT MAX(step) FROM experiment_metrics WHERE experiment_id = ?',
(experiment_id,)
)
max_step = cursor.fetchone()[0]
step = (max_step or 0) + 1
validation_metrics = validation_metrics or {}
custom_metrics = custom_metrics or {}
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO experiment_metrics
(experiment_id, step, timestamp, metrics, validation_metrics, custom_metrics)
VALUES (?, ?, ?, ?, ?, ?)
''', (
experiment_id,
step,
datetime.now().isoformat(),
json.dumps(metrics),
json.dumps(validation_metrics),
json.dumps(custom_metrics)
))
conn.commit()
def log_artifact(self, experiment_id: str, name: str, path: str,
artifact_type: str = "file", metadata: Dict[str, Any] = None) -> str:
"""Log an artifact for an experiment"""
artifact_id = str(uuid.uuid4())
metadata = metadata or {}
# Calculate file checksum and size if path exists
checksum = ""
size_bytes = 0
if os.path.exists(path):
with open(path, 'rb') as f:
content = f.read()
checksum = hashlib.sha256(content).hexdigest()
size_bytes = len(content)
artifact = ExperimentArtifact(
artifact_id=artifact_id,
experiment_id=experiment_id,
name=name,
type=artifact_type,
path=path,
metadata=metadata,
checksum=checksum,
size_bytes=size_bytes,
created_at=datetime.now().isoformat()
)
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO experiment_artifacts
(artifact_id, experiment_id, name, type, path, metadata, checksum, size_bytes, created_at)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
artifact.artifact_id,
artifact.experiment_id,
artifact.name,
artifact.type,
artifact.path,
json.dumps(artifact.metadata),
artifact.checksum,
artifact.size_bytes,
artifact.created_at
))
conn.commit()
return artifact_id
def log_model_version(self, experiment_id: str, model_name: str,
model_path: str, performance_metrics: Dict[str, float],
version: str = None, metadata: Dict[str, Any] = None) -> str:
"""Log a model version"""
version_id = str(uuid.uuid4())
version = version or "v1.0"
metadata = metadata or {}
model_version = ModelVersion(
version_id=version_id,
experiment_id=experiment_id,
model_name=model_name,
version=version,
status="training",
performance_metrics=performance_metrics,
model_path=model_path,
metadata=metadata,
created_at=datetime.now().isoformat()
)
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO model_versions
(version_id, experiment_id, model_name, version, status,
performance_metrics, model_path, metadata, created_at)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
model_version.version_id,
model_version.experiment_id,
model_version.model_name,
model_version.version,
model_version.status,
json.dumps(model_version.performance_metrics),
model_version.model_path,
json.dumps(model_version.metadata),
model_version.created_at
))
conn.commit()
return version_id
def get_experiment(self, experiment_id: str) -> Optional[Dict[str, Any]]:
"""Get experiment details"""
with self.get_db_connection() as conn:
cursor = conn.execute('''
SELECT * FROM experiments WHERE experiment_id = ?
''', (experiment_id,))
row = cursor.fetchone()
if not row:
return None
columns = [desc[0] for desc in cursor.description]
experiment = dict(zip(columns, row))
# Parse JSON fields
experiment['tags'] = json.loads(experiment.get('tags', '[]'))
experiment['parameters'] = json.loads(experiment.get('parameters', '{}'))
experiment['dataset_info'] = json.loads(experiment.get('dataset_info', '{}'))
experiment['environment_info'] = json.loads(experiment.get('environment_info', '{}'))
return experiment
def get_experiment_metrics(self, experiment_id: str) -> List[Dict[str, Any]]:
"""Get all metrics for an experiment"""
with self.get_db_connection() as conn:
cursor = conn.execute('''
SELECT * FROM experiment_metrics
WHERE experiment_id = ?
ORDER BY step
''', (experiment_id,))
metrics = []
for row in cursor.fetchall():
columns = [desc[0] for desc in cursor.description]
metric = dict(zip(columns, row))
# Parse JSON fields
metric['metrics'] = json.loads(metric.get('metrics', '{}'))
metric['validation_metrics'] = json.loads(metric.get('validation_metrics', '{}'))
metric['custom_metrics'] = json.loads(metric.get('custom_metrics', '{}'))
metrics.append(metric)
return metrics
def get_experiment_artifacts(self, experiment_id: str) -> List[Dict[str, Any]]:
"""Get all artifacts for an experiment"""
with self.get_db_connection() as conn:
cursor = conn.execute('''
SELECT * FROM experiment_artifacts
WHERE experiment_id = ?
ORDER BY created_at
''', (experiment_id,))
artifacts = []
for row in cursor.fetchall():
columns = [desc[0] for desc in cursor.description]
artifact = dict(zip(columns, row))
artifact['metadata'] = json.loads(artifact.get('metadata', '{}'))
artifacts.append(artifact)
return artifacts
def list_experiments(self, tags: List[str] = None, model_type: str = None,
limit: int = None) -> List[Dict[str, Any]]:
"""List experiments with optional filtering"""
query = 'SELECT * FROM experiments WHERE 1=1'
params = []
if tags:
# Simple tag filtering (could be improved with proper JSON querying)
for tag in tags:
query += ' AND tags LIKE ?'
params.append(f'%"{tag}"%')
if model_type:
query += ' AND model_type = ?'
params.append(model_type)
query += ' ORDER BY created_at DESC'
if limit:
query += ' LIMIT ?'
params.append(limit)
with self.get_db_connection() as conn:
cursor = conn.execute(query, params)
experiments = []
for row in cursor.fetchall():
columns = [desc[0] for desc in cursor.description]
experiment = dict(zip(columns, row))
# Parse JSON fields
experiment['tags'] = json.loads(experiment.get('tags', '[]'))
experiment['parameters'] = json.loads(experiment.get('parameters', '{}'))
experiment['dataset_info'] = json.loads(experiment.get('dataset_info', '{}'))
experiment['environment_info'] = json.loads(experiment.get('environment_info', '{}'))
experiments.append(experiment)
return experiments
def compare_experiments(self, experiment_ids: List[str],
comparison_metrics: List[str] = None) -> Dict[str, Any]:
"""Compare multiple experiments"""
comparison_id = str(uuid.uuid4())
comparison_metrics = comparison_metrics or ['accuracy', 'loss', 'f1_score']
comparison_data = {
"comparison_id": comparison_id,
"experiment_ids": experiment_ids,
"experiments": {},
"metric_comparison": {},
"summary": {}
}
# Get experiment details
for exp_id in experiment_ids:
experiment = self.get_experiment(exp_id)
if experiment:
metrics = self.get_experiment_metrics(exp_id)
comparison_data["experiments"][exp_id] = {
"name": experiment["name"],
"parameters": experiment["parameters"],
"metrics": metrics
}
# Compare metrics
for metric_name in comparison_metrics:
metric_values = {}
for exp_id in experiment_ids:
if exp_id in comparison_data["experiments"]:
exp_metrics = comparison_data["experiments"][exp_id]["metrics"]
if exp_metrics:
# Get the latest metric value
latest_metric = exp_metrics[-1]
if metric_name in latest_metric.get("metrics", {}):
metric_values[exp_id] = latest_metric["metrics"][metric_name]
elif metric_name in latest_metric.get("validation_metrics", {}):
metric_values[exp_id] = latest_metric["validation_metrics"][metric_name]
if metric_values:
comparison_data["metric_comparison"][metric_name] = {
"values": metric_values,
"best_experiment": max(metric_values, key=metric_values.get) if metric_name != 'loss' else min(metric_values, key=metric_values.get),
"worst_experiment": min(metric_values, key=metric_values.get) if metric_name != 'loss' else max(metric_values, key=metric_values.get),
"range": max(metric_values.values()) - min(metric_values.values()) if metric_values else 0
}
# Generate summary
if comparison_data["metric_comparison"]:
best_experiments = {}
for metric_name, metric_data in comparison_data["metric_comparison"].items():
best_exp = metric_data["best_experiment"]
if best_exp not in best_experiments:
best_experiments[best_exp] = 0
best_experiments[best_exp] += 1
if best_experiments:
overall_best = max(best_experiments, key=best_experiments.get)
comparison_data["summary"]["overall_best_experiment"] = overall_best
comparison_data["summary"]["best_experiment_name"] = comparison_data["experiments"][overall_best]["name"]
# Store comparison in database
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO experiment_comparisons
(comparison_id, name, experiment_ids, comparison_metrics, created_at)
VALUES (?, ?, ?, ?, ?)
''', (
comparison_id,
f"Comparison of {len(experiment_ids)} experiments",
json.dumps(experiment_ids),
json.dumps(comparison_data),
datetime.now().isoformat()
))
conn.commit()
return comparison_data
def get_model_leaderboard(self, model_type: str = None,
metric_name: str = "accuracy",
limit: int = 10) -> List[Dict[str, Any]]:
"""Get model leaderboard based on performance metrics"""
query = '''
SELECT e.experiment_id, e.name, e.model_type, e.created_at,
mv.version_id, mv.model_name, mv.version, mv.performance_metrics
FROM experiments e
JOIN model_versions mv ON e.experiment_id = mv.experiment_id
WHERE mv.status != 'archived'
'''
params = []
if model_type:
query += ' AND e.model_type = ?'
params.append(model_type)
query += ' ORDER BY e.created_at DESC'
with self.get_db_connection() as conn:
cursor = conn.execute(query, params)
models = []
for row in cursor.fetchall():
columns = [desc[0] for desc in cursor.description]
model = dict(zip(columns, row))
# Parse performance metrics
performance_metrics = json.loads(model.get('performance_metrics', '{}'))
model['performance_metrics'] = performance_metrics
# Extract target metric for sorting
model['target_metric_value'] = performance_metrics.get(metric_name, 0)
models.append(model)
# Sort by target metric (descending for most metrics, ascending for loss)
reverse_sort = metric_name.lower() != 'loss'
models.sort(key=lambda x: x['target_metric_value'], reverse=reverse_sort)
return models[:limit] if limit else models
def update_experiment_status(self, experiment_id: str, status: str) -> None:
"""Update experiment status"""
with self.get_db_connection() as conn:
conn.execute('''
UPDATE experiments
SET status = ?, updated_at = ?
WHERE experiment_id = ?
''', (status, datetime.now().isoformat(), experiment_id))
conn.commit()
def archive_experiment(self, experiment_id: str) -> None:
"""Archive an experiment"""
self.update_experiment_status(experiment_id, 'archived')
# Archive associated model versions
with self.get_db_connection() as conn:
conn.execute('''
UPDATE model_versions
SET status = 'archived'
WHERE experiment_id = ?
''', (experiment_id,))
conn.commit()
def get_experiment_stats(self) -> Dict[str, Any]:
"""Get overall experiment tracking statistics"""
with self.get_db_connection() as conn:
# Total experiments
cursor = conn.execute('SELECT COUNT(*) FROM experiments')
total_experiments = cursor.fetchone()[0]
# Experiments by status
cursor = conn.execute('''
SELECT status, COUNT(*)
FROM experiments
GROUP BY status
''')
status_counts = dict(cursor.fetchall())
# Experiments by model type
cursor = conn.execute('''
SELECT model_type, COUNT(*)
FROM experiments
GROUP BY model_type
''')
model_type_counts = dict(cursor.fetchall())
# Total artifacts
cursor = conn.execute('SELECT COUNT(*) FROM experiment_artifacts')
total_artifacts = cursor.fetchone()[0]
# Total model versions
cursor = conn.execute('SELECT COUNT(*) FROM model_versions')
total_model_versions = cursor.fetchone()[0]
# Recent activity
cursor = conn.execute('''
SELECT COUNT(*) FROM experiments
WHERE created_at >= datetime('now', '-7 days')
''')
experiments_last_week = cursor.fetchone()[0]
return {
"total_experiments": total_experiments,
"status_distribution": status_counts,
"model_type_distribution": model_type_counts,
"total_artifacts": total_artifacts,
"total_model_versions": total_model_versions,
"experiments_last_week": experiments_last_week,
"generated_at": datetime.now().isoformat()
}
# Example usage and testing
if __name__ == "__main__":
# Initialize experiment tracker
tracker = ExperimentTracker()
print("πŸ§ͺ MLOps Experiment Tracker Testing:")
print("=" * 50)
# Create sample experiments
exp1_id = tracker.create_experiment(
name="Cybersecurity Threat Detection - CNN",
description="Convolutional Neural Network for malware detection",
tags=["malware", "cnn", "classification"],
parameters={"learning_rate": 0.001, "batch_size": 32, "epochs": 50},
model_type="cnn",
dataset_info={"name": "malware_samples", "size": 10000, "features": 128}
)
exp2_id = tracker.create_experiment(
name="Network Anomaly Detection - LSTM",
description="LSTM network for network traffic anomaly detection",
tags=["anomaly", "lstm", "network"],
parameters={"learning_rate": 0.0001, "batch_size": 64, "epochs": 30},
model_type="lstm",
dataset_info={"name": "network_traffic", "size": 50000, "features": 64}
)
# Log metrics for experiments
print(f"\nπŸ“Š Logging metrics for experiments...")
for step in range(1, 6):
# CNN experiment metrics
tracker.log_metrics(exp1_id, {
"accuracy": 0.7 + step * 0.05,
"loss": 0.5 - step * 0.05,
"precision": 0.75 + step * 0.03,
"recall": 0.72 + step * 0.04
}, validation_metrics={
"val_accuracy": 0.68 + step * 0.04,
"val_loss": 0.52 - step * 0.04
}, step=step)
# LSTM experiment metrics
tracker.log_metrics(exp2_id, {
"accuracy": 0.65 + step * 0.06,
"loss": 0.6 - step * 0.06,
"f1_score": 0.7 + step * 0.05
}, validation_metrics={
"val_accuracy": 0.62 + step * 0.05,
"val_loss": 0.65 - step * 0.05
}, step=step)
# Log model versions
print("πŸ€– Logging model versions...")
model1_id = tracker.log_model_version(
exp1_id,
"ThreatDetectionCNN",
"/models/threat_cnn_v1.pkl",
{"accuracy": 0.95, "precision": 0.93, "recall": 0.92},
version="v1.0"
)
model2_id = tracker.log_model_version(
exp2_id,
"AnomalyDetectionLSTM",
"/models/anomaly_lstm_v1.pkl",
{"accuracy": 0.91, "f1_score": 0.89},
version="v1.0"
)
# Log artifacts
print("πŸ“ Logging artifacts...")
tracker.log_artifact(exp1_id, "training_plot.png", "/artifacts/training_plot.png", "plot")
tracker.log_artifact(exp2_id, "confusion_matrix.png", "/artifacts/confusion_matrix.png", "plot")
# List experiments
print("\nπŸ“‹ Listing experiments:")
experiments = tracker.list_experiments(limit=5)
for exp in experiments:
print(f" - {exp['name']} ({exp['model_type']}) - {len(exp['tags'])} tags")
# Compare experiments
print("\nβš–οΈ Comparing experiments:")
comparison = tracker.compare_experiments([exp1_id, exp2_id], ["accuracy", "loss"])
if comparison["summary"]:
best_exp_name = comparison["summary"]["best_experiment_name"]
print(f" Best overall experiment: {best_exp_name}")
# Get leaderboard
print("\nπŸ† Model Leaderboard (by accuracy):")
leaderboard = tracker.get_model_leaderboard(metric_name="accuracy", limit=5)
for i, model in enumerate(leaderboard, 1):
accuracy = model.get('target_metric_value', 0)
print(f" {i}. {model['model_name']} - Accuracy: {accuracy:.3f}")
# Get statistics
print("\nπŸ“ˆ Experiment Statistics:")
stats = tracker.get_experiment_stats()
print(f" Total Experiments: {stats['total_experiments']}")
print(f" Total Model Versions: {stats['total_model_versions']}")
print(f" Total Artifacts: {stats['total_artifacts']}")
print(f" Experiments Last Week: {stats['experiments_last_week']}")
print("\nβœ… MLOps Experiment Tracker implemented and tested")