cyber_llm / src /orchestration /multi_agent_scenarios.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Advanced Multi-Agent Scenario Orchestration for Cyber-LLM
Handles complex red team exercises and coordinated agent operations
"""
import asyncio
import json
import yaml
from typing import Dict, List, Any, Optional, Tuple, Union
from datetime import datetime, timedelta
from pathlib import Path
from dataclasses import dataclass, asdict
from enum import Enum
import uuid
import networkx as nx
from concurrent.futures import ThreadPoolExecutor, as_completed
from ..agents.orchestrator_agent import OrchestratorAgent
from ..agents.recon_agent import ReconnaissanceAgent
from ..agents.c2_agent import CommandControlAgent
from ..agents.post_exploit_agent import PostExploitAgent
from ..agents.safety_agent import SafetyAgent
from ..agents.explainability_agent import ExplainabilityAgent
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory, retry_with_backoff
class ScenarioType(Enum):
"""Types of security scenarios"""
RED_TEAM_EXERCISE = "red_team_exercise"
PENETRATION_TEST = "penetration_test"
THREAT_HUNTING = "threat_hunting"
INCIDENT_RESPONSE = "incident_response"
VULNERABILITY_ASSESSMENT = "vulnerability_assessment"
SECURITY_AUDIT = "security_audit"
class AgentRole(Enum):
"""Agent roles in scenarios"""
LEADER = "leader"
SPECIALIST = "specialist"
SUPPORT = "support"
OBSERVER = "observer"
@dataclass
class ScenarioStep:
"""Individual step in a security scenario"""
id: str
name: str
description: str
agent_type: str
dependencies: List[str]
parameters: Dict[str, Any]
timeout: int = 300 # 5 minutes default
retry_count: int = 3
critical: bool = False
parallel_group: Optional[str] = None
@dataclass
class ScenarioResult:
"""Result from executing a scenario step"""
step_id: str
success: bool
output: Any
error: Optional[str]
execution_time: float
timestamp: datetime
@dataclass
class RedTeamScenario:
"""Complete red team exercise scenario"""
id: str
name: str
description: str
scenario_type: ScenarioType
target_environment: Dict[str, Any]
steps: List[ScenarioStep]
success_criteria: Dict[str, Any]
safety_constraints: List[str]
estimated_duration: int # minutes
difficulty_level: str # beginner, intermediate, advanced, expert
class MultiAgentOrchestrator:
"""Advanced orchestrator for complex multi-agent scenarios"""
def __init__(self,
logger: Optional[CyberLLMLogger] = None,
max_concurrent_agents: int = 5):
self.logger = logger or CyberLLMLogger(name="multi_agent_orchestrator")
self.max_concurrent_agents = max_concurrent_agents
# Initialize agents
self.agents = {
'orchestrator': OrchestratorAgent(logger=self.logger),
'recon': ReconnaissanceAgent(logger=self.logger),
'c2': CommandControlAgent(logger=self.logger),
'post_exploit': PostExploitAgent(logger=self.logger),
'safety': SafetyAgent(logger=self.logger),
'explainability': ExplainabilityAgent(logger=self.logger)
}
# Execution state
self.active_scenarios = {}
self.scenario_results = {}
self.agent_status = {name: "idle" for name in self.agents.keys()}
# Scenario templates
self.scenario_templates = self._load_scenario_templates()
def _load_scenario_templates(self) -> Dict[str, RedTeamScenario]:
"""Load predefined scenario templates"""
templates = {}
# Advanced Persistent Threat (APT) Simulation
apt_scenario = RedTeamScenario(
id="apt_simulation_001",
name="Advanced Persistent Threat Simulation",
description="Multi-stage APT attack simulation with stealth focus",
scenario_type=ScenarioType.RED_TEAM_EXERCISE,
target_environment={
"network_range": "10.0.0.0/24",
"domain": "target.local",
"critical_assets": ["domain_controller", "file_server", "database"]
},
steps=[
ScenarioStep(
id="recon_phase",
name="Reconnaissance",
description="Gather intelligence on target environment",
agent_type="recon",
dependencies=[],
parameters={
"target": "target.local",
"scope": "external",
"stealth_level": "high"
},
timeout=600,
critical=True
),
ScenarioStep(
id="initial_access",
name="Initial Access",
description="Gain initial foothold in target network",
agent_type="c2",
dependencies=["recon_phase"],
parameters={
"attack_vector": "spear_phishing",
"payload_type": "custom_backdoor"
},
timeout=900,
critical=True
),
ScenarioStep(
id="privilege_escalation",
name="Privilege Escalation",
description="Escalate privileges on compromised system",
agent_type="post_exploit",
dependencies=["initial_access"],
parameters={
"technique": "token_manipulation",
"target_privilege": "SYSTEM"
},
timeout=300
),
ScenarioStep(
id="lateral_movement",
name="Lateral Movement",
description="Move laterally through the network",
agent_type="post_exploit",
dependencies=["privilege_escalation"],
parameters={
"technique": "pass_the_hash",
"targets": ["file_server", "database"]
},
timeout=600,
parallel_group="expansion"
),
ScenarioStep(
id="data_exfiltration",
name="Data Exfiltration",
description="Exfiltrate sensitive data",
agent_type="post_exploit",
dependencies=["lateral_movement"],
parameters={
"data_types": ["financial", "pii", "intellectual_property"],
"exfil_method": "dns_tunneling"
},
timeout=450,
parallel_group="expansion"
),
ScenarioStep(
id="persistence",
name="Establish Persistence",
description="Maintain long-term access",
agent_type="c2",
dependencies=["privilege_escalation"],
parameters={
"persistence_type": "service_persistence",
"stealth_level": "high"
},
timeout=300
)
],
success_criteria={
"min_steps_completed": 4,
"critical_steps_required": ["recon_phase", "initial_access"],
"stealth_score_threshold": 0.7,
"detection_threshold": 0.3
},
safety_constraints=[
"no_actual_data_modification",
"no_service_disruption",
"maintain_system_stability",
"document_all_actions"
],
estimated_duration=180, # 3 hours
difficulty_level="advanced"
)
templates["apt_simulation"] = apt_scenario
# Vulnerability Assessment Scenario
vuln_assessment = RedTeamScenario(
id="vuln_assessment_001",
name="Comprehensive Vulnerability Assessment",
description="Multi-vector vulnerability discovery and assessment",
scenario_type=ScenarioType.VULNERABILITY_ASSESSMENT,
target_environment={
"targets": ["web_app", "network_services", "host_systems"],
"assessment_scope": "comprehensive"
},
steps=[
ScenarioStep(
id="network_discovery",
name="Network Discovery",
description="Discover network topology and services",
agent_type="recon",
dependencies=[],
parameters={
"scan_type": "comprehensive",
"port_range": "1-65535"
},
timeout=1800,
parallel_group="discovery"
),
ScenarioStep(
id="service_enumeration",
name="Service Enumeration",
description="Enumerate discovered services",
agent_type="recon",
dependencies=[],
parameters={
"service_types": ["web", "database", "file_sharing"],
"deep_scan": True
},
timeout=1200,
parallel_group="discovery"
),
ScenarioStep(
id="vulnerability_scanning",
name="Vulnerability Scanning",
description="Scan for known vulnerabilities",
agent_type="recon",
dependencies=["network_discovery", "service_enumeration"],
parameters={
"scanner_types": ["nessus", "openvas", "custom"],
"authenticated": False
},
timeout=2400,
critical=True
),
ScenarioStep(
id="web_app_testing",
name="Web Application Testing",
description="Test web applications for vulnerabilities",
agent_type="recon",
dependencies=["service_enumeration"],
parameters={
"test_types": ["owasp_top10", "custom_checks"],
"authentication_bypass": True
},
timeout=1800,
parallel_group="testing"
),
ScenarioStep(
id="exploit_validation",
name="Exploit Validation",
description="Validate critical vulnerabilities",
agent_type="c2",
dependencies=["vulnerability_scanning"],
parameters={
"exploit_types": ["proof_of_concept"],
"severity_threshold": "high"
},
timeout=900
)
],
success_criteria={
"vulnerability_discovery_rate": 0.8,
"false_positive_rate": 0.1,
"coverage_percentage": 0.9
},
safety_constraints=[
"read_only_operations",
"no_system_modification",
"minimal_service_impact"
],
estimated_duration=360, # 6 hours
difficulty_level="intermediate"
)
templates["vuln_assessment"] = vuln_assessment
return templates
async def execute_scenario(self,
scenario: RedTeamScenario,
context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Execute a complete multi-agent scenario"""
scenario_id = f"{scenario.id}_{uuid.uuid4().hex[:8]}"
start_time = datetime.now()
self.logger.info(f"Starting scenario execution",
scenario_id=scenario_id,
scenario_name=scenario.name,
scenario_type=scenario.scenario_type.value,
estimated_duration=scenario.estimated_duration)
# Initialize scenario state
self.active_scenarios[scenario_id] = {
'scenario': scenario,
'context': context or {},
'start_time': start_time,
'status': 'running',
'completed_steps': [],
'failed_steps': [],
'step_results': {}
}
try:
# Safety check
safety_approval = await self._safety_check(scenario)
if not safety_approval['approved']:
raise CyberLLMError(
f"Scenario failed safety check: {safety_approval['reason']}",
ErrorCategory.SAFETY
)
# Build execution graph
execution_graph = self._build_execution_graph(scenario.steps)
# Execute scenario steps
results = await self._execute_scenario_graph(
scenario_id,
execution_graph,
scenario.success_criteria
)
# Evaluate results
evaluation = self._evaluate_scenario_results(scenario, results)
# Generate report
report = await self._generate_scenario_report(
scenario_id,
scenario,
results,
evaluation
)
execution_time = (datetime.now() - start_time).total_seconds()
self.active_scenarios[scenario_id]['status'] = 'completed'
self.scenario_results[scenario_id] = {
'scenario': scenario,
'results': results,
'evaluation': evaluation,
'report': report,
'execution_time': execution_time,
'completed_at': datetime.now()
}
self.logger.info(f"Scenario execution completed",
scenario_id=scenario_id,
success=evaluation['overall_success'],
execution_time=execution_time,
steps_completed=len(results['completed']),
steps_failed=len(results['failed']))
return self.scenario_results[scenario_id]
except Exception as e:
self.active_scenarios[scenario_id]['status'] = 'failed'
self.logger.error(f"Scenario execution failed",
scenario_id=scenario_id,
error=str(e))
raise
finally:
# Cleanup
if scenario_id in self.active_scenarios:
del self.active_scenarios[scenario_id]
async def _safety_check(self, scenario: RedTeamScenario) -> Dict[str, Any]:
"""Perform safety check on scenario"""
safety_agent = self.agents['safety']
# Check scenario against safety constraints
check_request = {
'scenario_type': scenario.scenario_type.value,
'target_environment': scenario.target_environment,
'steps': [asdict(step) for step in scenario.steps],
'safety_constraints': scenario.safety_constraints
}
try:
safety_result = await safety_agent.evaluate_scenario_safety(check_request)
return {
'approved': safety_result.get('approved', False),
'reason': safety_result.get('reason', ''),
'risk_level': safety_result.get('risk_level', 'unknown'),
'recommendations': safety_result.get('recommendations', [])
}
except Exception as e:
self.logger.error("Safety check failed", error=str(e))
return {
'approved': False,
'reason': f"Safety check error: {str(e)}",
'risk_level': 'critical'
}
def _build_execution_graph(self, steps: List[ScenarioStep]) -> nx.DiGraph:
"""Build directed graph for scenario execution"""
graph = nx.DiGraph()
# Add nodes
for step in steps:
graph.add_node(step.id, step=step)
# Add dependency edges
for step in steps:
for dependency in step.dependencies:
if dependency in [s.id for s in steps]:
graph.add_edge(dependency, step.id)
# Verify graph is acyclic
if not nx.is_directed_acyclic_graph(graph):
raise CyberLLMError(
"Scenario contains circular dependencies",
ErrorCategory.VALIDATION
)
return graph
async def _execute_scenario_graph(self,
scenario_id: str,
graph: nx.DiGraph,
success_criteria: Dict[str, Any]) -> Dict[str, Any]:
"""Execute scenario steps according to dependency graph"""
completed_steps = set()
failed_steps = set()
step_results = {}
parallel_groups = {}
# Group steps by parallel execution groups
for node_id in graph.nodes():
step = graph.nodes[node_id]['step']
if step.parallel_group:
if step.parallel_group not in parallel_groups:
parallel_groups[step.parallel_group] = []
parallel_groups[step.parallel_group].append(step)
# Execute steps in topological order
execution_order = list(nx.topological_sort(graph))
for step_id in execution_order:
step = graph.nodes[step_id]['step']
# Check if dependencies are satisfied
dependencies_met = all(
dep in completed_steps for dep in step.dependencies
)
if not dependencies_met:
failed_steps.add(step_id)
self.logger.warning(f"Step dependencies not met: {step_id}")
continue
# Execute step
try:
if step.parallel_group and step.parallel_group in parallel_groups:
# Execute parallel group
group_steps = parallel_groups[step.parallel_group]
group_results = await self._execute_parallel_steps(group_steps)
for group_step, result in group_results.items():
step_results[group_step.id] = result
if result.success:
completed_steps.add(group_step.id)
else:
failed_steps.add(group_step.id)
# Remove processed group
del parallel_groups[step.parallel_group]
else:
# Execute single step
result = await self._execute_single_step(step)
step_results[step_id] = result
if result.success:
completed_steps.add(step_id)
else:
failed_steps.add(step_id)
# Check if critical step failed
if step.critical:
self.logger.error(f"Critical step failed: {step_id}")
break
except Exception as e:
self.logger.error(f"Step execution error: {step_id}", error=str(e))
failed_steps.add(step_id)
if step.critical:
break
return {
'completed': completed_steps,
'failed': failed_steps,
'results': step_results,
'success_rate': len(completed_steps) / len(graph.nodes()) if graph.nodes() else 0
}
async def _execute_parallel_steps(self,
steps: List[ScenarioStep]) -> Dict[ScenarioStep, ScenarioResult]:
"""Execute multiple steps in parallel"""
tasks = []
for step in steps:
task = asyncio.create_task(self._execute_single_step(step))
tasks.append((step, task))
results = {}
completed_tasks = await asyncio.gather(*[task for _, task in tasks], return_exceptions=True)
for (step, _), result in zip(tasks, completed_tasks):
if isinstance(result, Exception):
results[step] = ScenarioResult(
step_id=step.id,
success=False,
output=None,
error=str(result),
execution_time=0,
timestamp=datetime.now()
)
else:
results[step] = result
return results
@retry_with_backoff(max_retries=3)
async def _execute_single_step(self, step: ScenarioStep) -> ScenarioResult:
"""Execute a single scenario step"""
start_time = datetime.now()
self.logger.info(f"Executing step: {step.name}",
step_id=step.id,
agent_type=step.agent_type)
try:
# Get appropriate agent
agent = self.agents.get(step.agent_type)
if not agent:
raise CyberLLMError(
f"Unknown agent type: {step.agent_type}",
ErrorCategory.VALIDATION
)
# Update agent status
self.agent_status[step.agent_type] = "busy"
# Execute step with timeout
result = await asyncio.wait_for(
agent.execute_task(step.parameters),
timeout=step.timeout
)
execution_time = (datetime.now() - start_time).total_seconds()
step_result = ScenarioResult(
step_id=step.id,
success=True,
output=result,
error=None,
execution_time=execution_time,
timestamp=datetime.now()
)
self.logger.info(f"Step completed successfully: {step.name}",
step_id=step.id,
execution_time=execution_time)
return step_result
except asyncio.TimeoutError:
error_msg = f"Step timed out after {step.timeout} seconds"
self.logger.error(f"Step timeout: {step.name}", step_id=step.id)
return ScenarioResult(
step_id=step.id,
success=False,
output=None,
error=error_msg,
execution_time=step.timeout,
timestamp=datetime.now()
)
except Exception as e:
execution_time = (datetime.now() - start_time).total_seconds()
error_msg = str(e)
self.logger.error(f"Step execution failed: {step.name}",
step_id=step.id,
error=error_msg)
return ScenarioResult(
step_id=step.id,
success=False,
output=None,
error=error_msg,
execution_time=execution_time,
timestamp=datetime.now()
)
finally:
# Reset agent status
self.agent_status[step.agent_type] = "idle"
def _evaluate_scenario_results(self,
scenario: RedTeamScenario,
results: Dict[str, Any]) -> Dict[str, Any]:
"""Evaluate scenario results against success criteria"""
success_criteria = scenario.success_criteria
evaluation = {
'overall_success': False,
'criteria_met': {},
'score': 0.0,
'recommendations': []
}
# Check minimum steps completed
min_steps = success_criteria.get('min_steps_completed', 0)
steps_completed = len(results['completed'])
evaluation['criteria_met']['min_steps_completed'] = steps_completed >= min_steps
# Check critical steps
critical_steps = success_criteria.get('critical_steps_required', [])
critical_met = all(step in results['completed'] for step in critical_steps)
evaluation['criteria_met']['critical_steps_completed'] = critical_met
# Calculate success score
total_steps = len(results['completed']) + len(results['failed'])
if total_steps > 0:
success_rate = len(results['completed']) / total_steps
evaluation['score'] = success_rate
# Overall success determination
evaluation['overall_success'] = (
evaluation['criteria_met'].get('min_steps_completed', False) and
evaluation['criteria_met'].get('critical_steps_completed', False) and
evaluation['score'] >= 0.7 # 70% success threshold
)
# Generate recommendations
if not evaluation['overall_success']:
if not critical_met:
evaluation['recommendations'].append("Complete all critical steps")
if evaluation['score'] < 0.7:
evaluation['recommendations'].append("Improve step success rate")
return evaluation
async def _generate_scenario_report(self,
scenario_id: str,
scenario: RedTeamScenario,
results: Dict[str, Any],
evaluation: Dict[str, Any]) -> Dict[str, Any]:
"""Generate comprehensive scenario execution report"""
# Get explainability analysis
explainability_agent = self.agents['explainability']
analysis_request = {
'scenario': asdict(scenario),
'results': results,
'evaluation': evaluation
}
try:
explanation = await explainability_agent.analyze_scenario_execution(analysis_request)
except Exception as e:
self.logger.warning("Failed to generate explanation", error=str(e))
explanation = {"analysis": "Analysis unavailable", "insights": []}
report = {
'scenario_id': scenario_id,
'scenario_summary': {
'name': scenario.name,
'type': scenario.scenario_type.value,
'difficulty': scenario.difficulty_level,
'estimated_duration': scenario.estimated_duration
},
'execution_summary': {
'total_steps': len(scenario.steps),
'completed_steps': len(results['completed']),
'failed_steps': len(results['failed']),
'success_rate': results['success_rate'],
'overall_success': evaluation['overall_success']
},
'detailed_results': results['results'],
'evaluation': evaluation,
'explanation': explanation,
'generated_at': datetime.now().isoformat()
}
return report
def get_scenario_template(self, template_name: str) -> Optional[RedTeamScenario]:
"""Get a scenario template by name"""
return self.scenario_templates.get(template_name)
def list_scenario_templates(self) -> List[str]:
"""List available scenario templates"""
return list(self.scenario_templates.keys())
def get_active_scenarios(self) -> Dict[str, Any]:
"""Get currently active scenarios"""
return self.active_scenarios.copy()
def get_agent_status(self) -> Dict[str, str]:
"""Get current status of all agents"""
return self.agent_status.copy()
# Convenience functions
async def execute_red_team_scenario(scenario_name: str = "apt_simulation") -> Dict[str, Any]:
"""Execute a predefined red team scenario"""
orchestrator = MultiAgentOrchestrator()
template = orchestrator.get_scenario_template(scenario_name)
if not template:
raise ValueError(f"Unknown scenario template: {scenario_name}")
return await orchestrator.execute_scenario(template)
async def execute_vulnerability_assessment(targets: List[str]) -> Dict[str, Any]:
"""Execute vulnerability assessment scenario"""
orchestrator = MultiAgentOrchestrator()
template = orchestrator.get_scenario_template("vuln_assessment")
if not template:
raise ValueError("Vulnerability assessment template not found")
# Customize template with specific targets
context = {"custom_targets": targets}
return await orchestrator.execute_scenario(template, context)
# Example usage
if __name__ == "__main__":
async def main():
# Initialize orchestrator
orchestrator = MultiAgentOrchestrator()
# List available templates
templates = orchestrator.list_scenario_templates()
print(f"Available scenario templates: {templates}")
# Execute APT simulation
result = await execute_red_team_scenario("apt_simulation")
print(f"Scenario completed: {result['evaluation']['overall_success']}")
print(f"Success rate: {result['evaluation']['score']:.2%}")
asyncio.run(main())