cyber_llm / src /training /preprocess.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Data Preprocessing Pipeline for Cyber-LLM
Handles cleaning, tokenization, and preparation of cybersecurity training data.
"""
import os
import json
import logging
import argparse
from pathlib import Path
from typing import Dict, List, Any, Optional, Tuple
import re
from dataclasses import dataclass
try:
from transformers import AutoTokenizer
import numpy as np
from sklearn.model_selection import train_test_split
import dvc.api
except ImportError:
print("Required packages not installed. Run: pip install transformers scikit-learn dvc")
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class ProcessingConfig:
"""Configuration for data preprocessing."""
max_sequence_length: int = 2048
min_sequence_length: int = 128
overlap_ratio: float = 0.1
validation_split: float = 0.15
test_split: float = 0.1
tokenizer_name: str = "microsoft/DialoGPT-medium"
special_tokens: Dict[str, str] = None
def __post_init__(self):
if self.special_tokens is None:
self.special_tokens = {
"recon_token": "<|RECON|>",
"c2_token": "<|C2|>",
"postexploit_token": "<|POSTEXPLOIT|>",
"opsec_token": "<|OPSEC|>",
"explain_token": "<|EXPLAIN|>",
"safety_token": "<|SAFETY|>"
}
class CyberDataPreprocessor:
"""Advanced data preprocessor for cybersecurity domain."""
def __init__(self, config: ProcessingConfig):
self.config = config
self.tokenizer = None
self.document_stats = {}
self._initialize_tokenizer()
def _initialize_tokenizer(self):
"""Initialize tokenizer with special tokens."""
logger.info(f"Loading tokenizer: {self.config.tokenizer_name}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.config.tokenizer_name,
trust_remote_code=True
)
# Add special tokens
special_tokens_dict = {
'additional_special_tokens': list(self.config.special_tokens.values())
}
num_added_toks = self.tokenizer.add_special_tokens(special_tokens_dict)
logger.info(f"Added {num_added_toks} special tokens")
# Set pad token if not exists
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def load_raw_data(self, data_dir: Path) -> List[Dict]:
"""Load and parse raw JSON data files."""
logger.info(f"Loading data from: {data_dir}")
json_files = list(data_dir.glob('**/*.json'))
documents = []
for json_file in json_files:
if json_file.name in ['conversion_report.json', 'metadata.json']:
continue
try:
with open(json_file, 'r', encoding='utf-8') as f:
data = json.load(f)
# Extract relevant fields
if 'content' in data and 'metadata' in data:
doc = {
'id': json_file.stem,
'content': data['content'],
'source_type': data['metadata'].get('source_type', 'unknown'),
'filename': data['metadata'].get('filename', ''),
'source_file': str(json_file)
}
documents.append(doc)
except Exception as e:
logger.error(f"Error loading {json_file}: {str(e)}")
logger.info(f"Loaded {len(documents)} documents")
return documents
def clean_and_structure_text(self, documents: List[Dict]) -> List[Dict]:
"""Clean and structure text content."""
logger.info("Cleaning and structuring text content")
cleaned_documents = []
for doc in documents:
try:
content = doc['content']
# Clean content
cleaned_content = self._clean_text(content)
# Structure based on document type
structured_content = self._structure_by_type(
cleaned_content,
doc['source_type']
)
# Add special tokens based on content type
tagged_content = self._add_domain_tags(
structured_content,
doc['source_type']
)
doc['cleaned_content'] = cleaned_content
doc['structured_content'] = structured_content
doc['tagged_content'] = tagged_content
cleaned_documents.append(doc)
except Exception as e:
logger.error(f"Error processing document {doc['id']}: {str(e)}")
continue
logger.info(f"Cleaned {len(cleaned_documents)} documents")
return cleaned_documents
def _clean_text(self, text: str) -> str:
"""Clean raw text content."""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text)
# Remove page numbers and headers/footers
text = re.sub(r'Page \d+', '', text)
text = re.sub(r'\n{3,}', '\n\n', text)
# Fix common OCR errors
text = re.sub(r'([a-z])([A-Z])', r'\1 \2', text) # Missing spaces
text = re.sub(r'(\w)(\d)', r'\1 \2', text) # Word-number separation
# Normalize quotes and dashes
text = text.replace('"', '"').replace('"', '"')
text = text.replace('–', '-').replace('—', '-')
# Remove artifacts
text = re.sub(r'^\s*[•\-\*]\s*', '', text, flags=re.MULTILINE)
return text.strip()
def _structure_by_type(self, content: str, doc_type: str) -> str:
"""Structure content based on document type."""
if doc_type == 'mitre_attack':
return self._structure_mitre_content(content)
elif doc_type == 'apt_report':
return self._structure_apt_report(content)
elif doc_type == 'opsec_guide':
return self._structure_opsec_content(content)
elif doc_type == 'malware_analysis':
return self._structure_malware_content(content)
else:
return content
def _structure_mitre_content(self, content: str) -> str:
"""Structure MITRE ATT&CK content."""
# Find and structure tactics/techniques
sections = []
# Look for technique patterns
technique_pattern = r'(T\d{4}(?:\.\d{3})?)\s*[-:]\s*([^\n]+)'
techniques = re.findall(technique_pattern, content)
if techniques:
sections.append("MITRE ATT&CK Techniques:")
for tech_id, tech_name in techniques:
sections.append(f"- {tech_id}: {tech_name}")
# Look for tactic sections
tactic_pattern = r'(Initial Access|Execution|Persistence|Privilege Escalation|Defense Evasion|Credential Access|Discovery|Lateral Movement|Collection|Exfiltration|Command and Control|Impact)'
current_section = None
for line in content.split('\n'):
tactic_match = re.search(tactic_pattern, line, re.IGNORECASE)
if tactic_match:
current_section = tactic_match.group(1)
sections.append(f"\n{current_section}:")
elif current_section and line.strip():
sections.append(f" {line.strip()}")
return '\n'.join(sections) if sections else content
def _structure_apt_report(self, content: str) -> str:
"""Structure APT report content."""
sections = []
# Extract IOCs
ip_pattern = r'\b(?:\d{1,3}\.){3}\d{1,3}\b'
domain_pattern = r'\b[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)+\b'
hash_pattern = r'\b[a-fA-F0-9]{32,64}\b'
ips = re.findall(ip_pattern, content)
domains = re.findall(domain_pattern, content)
hashes = re.findall(hash_pattern, content)
if ips or domains or hashes:
sections.append("Indicators of Compromise (IOCs):")
if ips:
sections.append(f"IPs: {', '.join(set(ips[:10]))}") # Limit to first 10
if domains:
sections.append(f"Domains: {', '.join(set(domains[:10]))}")
if hashes:
sections.append(f"Hashes: {', '.join(set(hashes[:5]))}")
# Extract TTPs
ttp_keywords = ['technique', 'tactic', 'procedure', 'method', 'attack']
ttp_lines = []
for line in content.split('\n'):
if any(keyword in line.lower() for keyword in ttp_keywords):
ttp_lines.append(line.strip())
if ttp_lines:
sections.append("\nTTPs (Tactics, Techniques, Procedures):")
sections.extend(f"- {line}" for line in ttp_lines[:10])
sections.append(f"\nFull Report:\n{content}")
return '\n'.join(sections)
def _structure_opsec_content(self, content: str) -> str:
"""Structure OPSEC guide content."""
sections = []
# Look for OPSEC principles/rules
opsec_keywords = ['stealth', 'detection', 'evasion', 'anonymity', 'operational security']
opsec_lines = []
for line in content.split('\n'):
if any(keyword in line.lower() for keyword in opsec_keywords):
opsec_lines.append(line.strip())
if opsec_lines:
sections.append("OPSEC Guidelines:")
sections.extend(f"- {line}" for line in opsec_lines[:15])
sections.append(f"\nDetailed Content:\n{content}")
return '\n'.join(sections)
def _structure_malware_content(self, content: str) -> str:
"""Structure malware analysis content."""
sections = []
# Extract analysis sections
analysis_sections = ['summary', 'behavior', 'network', 'filesystem', 'registry']
for section in analysis_sections:
pattern = rf'{section}[:\s]+(.*?)(?=\n[a-z]+:|$)'
match = re.search(pattern, content, re.IGNORECASE | re.DOTALL)
if match:
sections.append(f"{section.title()}: {match.group(1).strip()}")
return '\n'.join(sections) if sections else content
def _add_domain_tags(self, content: str, doc_type: str) -> str:
"""Add domain-specific special tokens."""
tag_mapping = {
'mitre_attack': self.config.special_tokens['recon_token'],
'apt_report': self.config.special_tokens['postexploit_token'],
'opsec_guide': self.config.special_tokens['opsec_token'],
'malware_analysis': self.config.special_tokens['postexploit_token']
}
tag = tag_mapping.get(doc_type, '')
if tag:
return f"{tag} {content}"
return content
def create_training_sequences(self, documents: List[Dict]) -> List[Dict]:
"""Create training sequences with proper tokenization."""
logger.info("Creating training sequences")
sequences = []
for doc in documents:
content = doc['tagged_content']
# Tokenize content
tokens = self.tokenizer.encode(content, add_special_tokens=True)
# Create overlapping sequences
seq_length = self.config.max_sequence_length
overlap = int(seq_length * self.config.overlap_ratio)
for i in range(0, len(tokens), seq_length - overlap):
seq_tokens = tokens[i:i + seq_length]
# Skip sequences that are too short
if len(seq_tokens) < self.config.min_sequence_length:
continue
# Pad sequence if necessary
if len(seq_tokens) < seq_length:
seq_tokens.extend([self.tokenizer.pad_token_id] * (seq_length - len(seq_tokens)))
sequence = {
'input_ids': seq_tokens,
'attention_mask': [1 if token != self.tokenizer.pad_token_id else 0 for token in seq_tokens],
'labels': seq_tokens.copy(), # For language modeling
'source_type': doc['source_type'],
'document_id': doc['id'],
'sequence_index': i // (seq_length - overlap)
}
sequences.append(sequence)
logger.info(f"Created {len(sequences)} training sequences")
return sequences
def split_data(self, sequences: List[Dict]) -> Tuple[List[Dict], List[Dict], List[Dict]]:
"""Split data into train/validation/test sets."""
logger.info("Splitting data into train/validation/test sets")
# Group sequences by document to ensure proper splitting
doc_sequences = {}
for seq in sequences:
doc_id = seq['document_id']
if doc_id not in doc_sequences:
doc_sequences[doc_id] = []
doc_sequences[doc_id].append(seq)
# Split document IDs
doc_ids = list(doc_sequences.keys())
# First split: train + temp vs test
train_temp_ids, test_ids = train_test_split(
doc_ids,
test_size=self.config.test_split,
random_state=42,
shuffle=True
)
# Second split: train vs validation
val_size = self.config.validation_split / (1 - self.config.test_split)
train_ids, val_ids = train_test_split(
train_temp_ids,
test_size=val_size,
random_state=42,
shuffle=True
)
# Collect sequences for each split
train_sequences = []
val_sequences = []
test_sequences = []
for doc_id, doc_seqs in doc_sequences.items():
if doc_id in train_ids:
train_sequences.extend(doc_seqs)
elif doc_id in val_ids:
val_sequences.extend(doc_seqs)
else: # test_ids
test_sequences.extend(doc_seqs)
logger.info(f"Split: {len(train_sequences)} train, {len(val_sequences)} val, {len(test_sequences)} test")
return train_sequences, val_sequences, test_sequences
def save_processed_data(self, train_data: List[Dict], val_data: List[Dict],
test_data: List[Dict], output_dir: Path):
"""Save processed data to files."""
output_dir.mkdir(parents=True, exist_ok=True)
# Save datasets
datasets = {
'train': train_data,
'validation': val_data,
'test': test_data
}
for split_name, data in datasets.items():
output_file = output_dir / f'{split_name}.json'
logger.info(f"Saving {len(data)} {split_name} sequences to {output_file}")
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
# Save tokenizer
tokenizer_dir = output_dir / 'tokenizer'
self.tokenizer.save_pretrained(tokenizer_dir)
# Save preprocessing metadata
metadata = {
'config': self.config.__dict__,
'splits': {
'train_size': len(train_data),
'validation_size': len(val_data),
'test_size': len(test_data)
},
'tokenizer_info': {
'vocab_size': self.tokenizer.vocab_size,
'model_max_length': self.tokenizer.model_max_length,
'special_tokens': self.config.special_tokens
}
}
metadata_file = output_dir / 'preprocessing_metadata.json'
with open(metadata_file, 'w', encoding='utf-8') as f:
json.dump(metadata, f, indent=2, ensure_ascii=False)
logger.info(f"Preprocessing complete. Data saved to {output_dir}")
def main():
parser = argparse.ArgumentParser(description='Preprocess cybersecurity data for Cyber-LLM')
parser.add_argument('--input', required=True, help='Input directory with raw JSON files')
parser.add_argument('--output', required=True, help='Output directory for processed data')
parser.add_argument('--config', help='Configuration file path')
parser.add_argument('--max-length', type=int, default=2048, help='Maximum sequence length')
parser.add_argument('--tokenizer', default='microsoft/DialoGPT-medium', help='Tokenizer model name')
args = parser.parse_args()
# Create configuration
config = ProcessingConfig(
max_sequence_length=args.max_length,
tokenizer_name=args.tokenizer
)
# Initialize preprocessor
preprocessor = CyberDataPreprocessor(config)
# Load and process data
input_dir = Path(args.input)
output_dir = Path(args.output)
# Load raw data
documents = preprocessor.load_raw_data(input_dir)
# Clean and structure
cleaned_documents = preprocessor.clean_and_structure_text(documents)
# Create training sequences
sequences = preprocessor.create_training_sequences(cleaned_documents)
# Split data
train_data, val_data, test_data = preprocessor.split_data(sequences)
# Save processed data
preprocessor.save_processed_data(train_data, val_data, test_data, output_dir)
logger.info("Data preprocessing completed successfully!")
if __name__ == '__main__':
main()