dashboard / app.py
v0idgy's picture
Adding Application Files
1b73364 verified
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import datetime
import warnings
import os
import tempfile
from cachetools import cached, TTLCache
warnings.filterwarnings("ignore", category=FutureWarning, module="seaborn")
# ------------------------------------------------------------------
# 1) Load CSV data once
# ------------------------------------------------------------------
csv_data = None
def load_csv_data():
global csv_data
# Optional: specify column dtypes if known; adjust as necessary
dtype_dict = {
"order_id": "Int64",
"customer_id": "Int64",
"product_id": "Int64",
"quantity": "Int64",
"price": "float",
"total": "float",
"customer_name": "string",
"product_names": "string",
"categories": "string"
}
csv_data = pd.read_csv(
"sales_data.csv",
parse_dates=["order_date"],
dayfirst=True, # if your dates are DD/MM/YYYY format
low_memory=False,
dtype=dtype_dict
)
load_csv_data()
cache = TTLCache(maxsize=128, ttl=300)
@cached(cache)
def get_unique_categories():
global csv_data
if csv_data is None:
return []
cats = sorted(csv_data['categories'].dropna().unique().tolist())
cats = [cat.capitalize() for cat in cats]
return cats
def get_date_range():
global csv_data
if csv_data is None or csv_data.empty:
return None, None
return csv_data['order_date'].min(), csv_data['order_date'].max()
def filter_data(start_date, end_date, category):
global csv_data
if isinstance(start_date, str):
start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d').date()
if isinstance(end_date, str):
end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d').date()
df = csv_data.loc[
(csv_data['order_date'] >= pd.to_datetime(start_date)) &
(csv_data['order_date'] <= pd.to_datetime(end_date))
].copy()
if category != "All Categories":
df = df.loc[df['categories'].str.capitalize() == category].copy()
return df
def get_dashboard_stats(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return (0, 0, 0, "N/A")
df['revenue'] = df['price'] * df['quantity']
total_revenue = df['revenue'].sum()
total_orders = df['order_id'].nunique()
avg_order_value = total_revenue / total_orders if total_orders else 0
cat_revenues = df.groupby('categories')['revenue'].sum().sort_values(ascending=False)
top_category = cat_revenues.index[0] if not cat_revenues.empty else "N/A"
return (total_revenue, total_orders, avg_order_value, top_category.capitalize())
def get_data_for_table(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return pd.DataFrame()
df = df.sort_values(by=["order_id", "order_date"], ascending=[True, False]).copy()
columns_order = [
"order_id", "order_date", "customer_id", "customer_name",
"product_id", "product_names", "categories", "quantity",
"price", "total"
]
columns_order = [col for col in columns_order if col in df.columns]
df = df[columns_order].copy()
df['revenue'] = df['price'] * df['quantity']
return df
def get_plot_data(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return pd.DataFrame()
df['revenue'] = df['price'] * df['quantity']
plot_data = df.groupby(df['order_date'].dt.date)['revenue'].sum().reset_index()
plot_data.rename(columns={'order_date': 'date'}, inplace=True)
return plot_data
def get_revenue_by_category(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return pd.DataFrame()
df['revenue'] = df['price'] * df['quantity']
cat_data = df.groupby('categories')['revenue'].sum().reset_index()
cat_data = cat_data.sort_values(by='revenue', ascending=False)
return cat_data
def get_top_products(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return pd.DataFrame()
df['revenue'] = df['price'] * df['quantity']
prod_data = df.groupby('product_names')['revenue'].sum().reset_index()
prod_data = prod_data.sort_values(by='revenue', ascending=False).head(10)
return prod_data
def create_matplotlib_figure(data, x_col, y_col, title, xlabel, ylabel, orientation='v'):
plt.figure(figsize=(10, 6))
if data.empty:
plt.text(0.5, 0.5, 'No data available', ha='center', va='center')
else:
if orientation == 'v':
plt.bar(data[x_col], data[y_col])
plt.xticks(rotation=45, ha='right')
else:
plt.barh(data[x_col], data[y_col])
plt.gca().invert_yaxis()
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.tight_layout()
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
plt.savefig(tmpfile.name)
plt.close()
return tmpfile.name
def update_dashboard(start_date, end_date, category):
total_revenue, total_orders, avg_order_value, top_category = get_dashboard_stats(start_date, end_date, category)
# Generate plots
revenue_data = get_plot_data(start_date, end_date, category)
category_data = get_revenue_by_category(start_date, end_date, category)
top_products_data = get_top_products(start_date, end_date, category)
revenue_over_time_path = create_matplotlib_figure(
revenue_data, 'date', 'revenue',
"Revenue Over Time", "Date", "Revenue"
)
revenue_by_category_path = create_matplotlib_figure(
category_data, 'categories', 'revenue',
"Revenue by Category", "Category", "Revenue"
)
top_products_path = create_matplotlib_figure(
top_products_data, 'product_names', 'revenue',
"Top Products", "Revenue", "Product Name", orientation='h'
)
# Data table
table_data = get_data_for_table(start_date, end_date, category)
return (
revenue_over_time_path,
revenue_by_category_path,
top_products_path,
table_data,
total_revenue,
total_orders,
avg_order_value,
top_category
)
def create_dashboard():
min_date, max_date = get_date_range()
if min_date is None or max_date is None:
min_date = datetime.datetime.now()
max_date = datetime.datetime.now()
default_start_date = min_date
default_end_date = max_date
with gr.Blocks(css="""
footer {display: none !important;}
.tabs {border: none !important;}
.gr-plot {border: none !important; box-shadow: none !important;}
""") as dashboard:
gr.Markdown("# Sales Performance Dashboard")
# Filters row
with gr.Row():
start_date = gr.DateTime(
label="Start Date",
value=default_start_date.strftime('%Y-%m-%d'),
include_time=False,
type="datetime"
)
end_date = gr.DateTime(
label="End Date",
value=default_end_date.strftime('%Y-%m-%d'),
include_time=False,
type="datetime"
)
category_filter = gr.Dropdown(
choices=["All Categories"] + get_unique_categories(),
label="Category",
value="All Categories"
)
gr.Markdown("# Key Metrics")
# Stats row
with gr.Row():
total_revenue = gr.Number(label="Total Revenue", value=0)
total_orders = gr.Number(label="Total Orders", value=0)
avg_order_value = gr.Number(label="Average Order Value", value=0)
top_category = gr.Textbox(label="Top Category", value="N/A")
gr.Markdown("# Visualisations")
# Tabs for Plots
with gr.Tabs():
with gr.Tab("Revenue Over Time"):
revenue_over_time_image = gr.Image(label="Revenue Over Time", container=False)
with gr.Tab("Revenue by Category"):
revenue_by_category_image = gr.Image(label="Revenue by Category", container=False)
with gr.Tab("Top Products"):
top_products_image = gr.Image(label="Top Products", container=False)
gr.Markdown("# Raw Data")
# Data Table (below the plots)
data_table = gr.DataFrame(
label="Sales Data",
type="pandas",
interactive=False
)
# When filters change, update everything
for f in [start_date, end_date, category_filter]:
f.change(
fn=lambda s, e, c: update_dashboard(s, e, c),
inputs=[start_date, end_date, category_filter],
outputs=[
revenue_over_time_image,
revenue_by_category_image,
top_products_image,
data_table,
total_revenue,
total_orders,
avg_order_value,
top_category
]
)
# Initial load
dashboard.load(
fn=lambda: update_dashboard(default_start_date, default_end_date, "All Categories"),
outputs=[
revenue_over_time_image,
revenue_by_category_image,
top_products_image,
data_table,
total_revenue,
total_orders,
avg_order_value,
top_category
]
)
return dashboard
if __name__ == "__main__":
dashboard = create_dashboard()
dashboard.launch(share=True)