|
import gradio as gr
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import datetime
|
|
import warnings
|
|
import os
|
|
import tempfile
|
|
from cachetools import cached, TTLCache
|
|
|
|
warnings.filterwarnings("ignore", category=FutureWarning, module="seaborn")
|
|
|
|
|
|
|
|
|
|
csv_data = None
|
|
|
|
def load_csv_data():
|
|
global csv_data
|
|
|
|
|
|
dtype_dict = {
|
|
"order_id": "Int64",
|
|
"customer_id": "Int64",
|
|
"product_id": "Int64",
|
|
"quantity": "Int64",
|
|
"price": "float",
|
|
"total": "float",
|
|
"customer_name": "string",
|
|
"product_names": "string",
|
|
"categories": "string"
|
|
}
|
|
|
|
csv_data = pd.read_csv(
|
|
"sales_data.csv",
|
|
parse_dates=["order_date"],
|
|
dayfirst=True,
|
|
low_memory=False,
|
|
dtype=dtype_dict
|
|
)
|
|
|
|
load_csv_data()
|
|
|
|
|
|
|
|
cache = TTLCache(maxsize=128, ttl=300)
|
|
|
|
@cached(cache)
|
|
def get_unique_categories():
|
|
global csv_data
|
|
if csv_data is None:
|
|
return []
|
|
cats = sorted(csv_data['categories'].dropna().unique().tolist())
|
|
cats = [cat.capitalize() for cat in cats]
|
|
return cats
|
|
|
|
def get_date_range():
|
|
global csv_data
|
|
if csv_data is None or csv_data.empty:
|
|
return None, None
|
|
return csv_data['order_date'].min(), csv_data['order_date'].max()
|
|
|
|
def filter_data(start_date, end_date, category):
|
|
global csv_data
|
|
|
|
if isinstance(start_date, str):
|
|
start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d').date()
|
|
if isinstance(end_date, str):
|
|
end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d').date()
|
|
|
|
df = csv_data.loc[
|
|
(csv_data['order_date'] >= pd.to_datetime(start_date)) &
|
|
(csv_data['order_date'] <= pd.to_datetime(end_date))
|
|
].copy()
|
|
|
|
if category != "All Categories":
|
|
df = df.loc[df['categories'].str.capitalize() == category].copy()
|
|
|
|
return df
|
|
|
|
def get_dashboard_stats(start_date, end_date, category):
|
|
df = filter_data(start_date, end_date, category)
|
|
if df.empty:
|
|
return (0, 0, 0, "N/A")
|
|
|
|
df['revenue'] = df['price'] * df['quantity']
|
|
total_revenue = df['revenue'].sum()
|
|
total_orders = df['order_id'].nunique()
|
|
avg_order_value = total_revenue / total_orders if total_orders else 0
|
|
|
|
cat_revenues = df.groupby('categories')['revenue'].sum().sort_values(ascending=False)
|
|
top_category = cat_revenues.index[0] if not cat_revenues.empty else "N/A"
|
|
|
|
return (total_revenue, total_orders, avg_order_value, top_category.capitalize())
|
|
|
|
def get_data_for_table(start_date, end_date, category):
|
|
df = filter_data(start_date, end_date, category)
|
|
if df.empty:
|
|
return pd.DataFrame()
|
|
|
|
df = df.sort_values(by=["order_id", "order_date"], ascending=[True, False]).copy()
|
|
|
|
columns_order = [
|
|
"order_id", "order_date", "customer_id", "customer_name",
|
|
"product_id", "product_names", "categories", "quantity",
|
|
"price", "total"
|
|
]
|
|
columns_order = [col for col in columns_order if col in df.columns]
|
|
df = df[columns_order].copy()
|
|
|
|
df['revenue'] = df['price'] * df['quantity']
|
|
return df
|
|
|
|
def get_plot_data(start_date, end_date, category):
|
|
df = filter_data(start_date, end_date, category)
|
|
if df.empty:
|
|
return pd.DataFrame()
|
|
df['revenue'] = df['price'] * df['quantity']
|
|
plot_data = df.groupby(df['order_date'].dt.date)['revenue'].sum().reset_index()
|
|
plot_data.rename(columns={'order_date': 'date'}, inplace=True)
|
|
return plot_data
|
|
|
|
def get_revenue_by_category(start_date, end_date, category):
|
|
df = filter_data(start_date, end_date, category)
|
|
if df.empty:
|
|
return pd.DataFrame()
|
|
df['revenue'] = df['price'] * df['quantity']
|
|
cat_data = df.groupby('categories')['revenue'].sum().reset_index()
|
|
cat_data = cat_data.sort_values(by='revenue', ascending=False)
|
|
return cat_data
|
|
|
|
def get_top_products(start_date, end_date, category):
|
|
df = filter_data(start_date, end_date, category)
|
|
if df.empty:
|
|
return pd.DataFrame()
|
|
df['revenue'] = df['price'] * df['quantity']
|
|
prod_data = df.groupby('product_names')['revenue'].sum().reset_index()
|
|
prod_data = prod_data.sort_values(by='revenue', ascending=False).head(10)
|
|
return prod_data
|
|
|
|
def create_matplotlib_figure(data, x_col, y_col, title, xlabel, ylabel, orientation='v'):
|
|
plt.figure(figsize=(10, 6))
|
|
if data.empty:
|
|
plt.text(0.5, 0.5, 'No data available', ha='center', va='center')
|
|
else:
|
|
if orientation == 'v':
|
|
plt.bar(data[x_col], data[y_col])
|
|
plt.xticks(rotation=45, ha='right')
|
|
else:
|
|
plt.barh(data[x_col], data[y_col])
|
|
plt.gca().invert_yaxis()
|
|
|
|
plt.title(title)
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel(ylabel)
|
|
plt.tight_layout()
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
|
|
plt.savefig(tmpfile.name)
|
|
plt.close()
|
|
return tmpfile.name
|
|
|
|
|
|
|
|
def update_dashboard(start_date, end_date, category):
|
|
total_revenue, total_orders, avg_order_value, top_category = get_dashboard_stats(start_date, end_date, category)
|
|
|
|
|
|
revenue_data = get_plot_data(start_date, end_date, category)
|
|
category_data = get_revenue_by_category(start_date, end_date, category)
|
|
top_products_data = get_top_products(start_date, end_date, category)
|
|
|
|
revenue_over_time_path = create_matplotlib_figure(
|
|
revenue_data, 'date', 'revenue',
|
|
"Revenue Over Time", "Date", "Revenue"
|
|
)
|
|
revenue_by_category_path = create_matplotlib_figure(
|
|
category_data, 'categories', 'revenue',
|
|
"Revenue by Category", "Category", "Revenue"
|
|
)
|
|
top_products_path = create_matplotlib_figure(
|
|
top_products_data, 'product_names', 'revenue',
|
|
"Top Products", "Revenue", "Product Name", orientation='h'
|
|
)
|
|
|
|
|
|
table_data = get_data_for_table(start_date, end_date, category)
|
|
|
|
return (
|
|
revenue_over_time_path,
|
|
revenue_by_category_path,
|
|
top_products_path,
|
|
table_data,
|
|
total_revenue,
|
|
total_orders,
|
|
avg_order_value,
|
|
top_category
|
|
)
|
|
|
|
def create_dashboard():
|
|
min_date, max_date = get_date_range()
|
|
if min_date is None or max_date is None:
|
|
min_date = datetime.datetime.now()
|
|
max_date = datetime.datetime.now()
|
|
|
|
default_start_date = min_date
|
|
default_end_date = max_date
|
|
|
|
with gr.Blocks(css="""
|
|
footer {display: none !important;}
|
|
.tabs {border: none !important;}
|
|
.gr-plot {border: none !important; box-shadow: none !important;}
|
|
""") as dashboard:
|
|
|
|
gr.Markdown("# Sales Performance Dashboard")
|
|
|
|
|
|
with gr.Row():
|
|
start_date = gr.DateTime(
|
|
label="Start Date",
|
|
value=default_start_date.strftime('%Y-%m-%d'),
|
|
include_time=False,
|
|
type="datetime"
|
|
)
|
|
end_date = gr.DateTime(
|
|
label="End Date",
|
|
value=default_end_date.strftime('%Y-%m-%d'),
|
|
include_time=False,
|
|
type="datetime"
|
|
)
|
|
category_filter = gr.Dropdown(
|
|
choices=["All Categories"] + get_unique_categories(),
|
|
label="Category",
|
|
value="All Categories"
|
|
)
|
|
|
|
gr.Markdown("# Key Metrics")
|
|
|
|
|
|
with gr.Row():
|
|
total_revenue = gr.Number(label="Total Revenue", value=0)
|
|
total_orders = gr.Number(label="Total Orders", value=0)
|
|
avg_order_value = gr.Number(label="Average Order Value", value=0)
|
|
top_category = gr.Textbox(label="Top Category", value="N/A")
|
|
|
|
gr.Markdown("# Visualisations")
|
|
|
|
with gr.Tabs():
|
|
with gr.Tab("Revenue Over Time"):
|
|
revenue_over_time_image = gr.Image(label="Revenue Over Time", container=False)
|
|
with gr.Tab("Revenue by Category"):
|
|
revenue_by_category_image = gr.Image(label="Revenue by Category", container=False)
|
|
with gr.Tab("Top Products"):
|
|
top_products_image = gr.Image(label="Top Products", container=False)
|
|
|
|
gr.Markdown("# Raw Data")
|
|
|
|
data_table = gr.DataFrame(
|
|
label="Sales Data",
|
|
type="pandas",
|
|
interactive=False
|
|
)
|
|
|
|
|
|
for f in [start_date, end_date, category_filter]:
|
|
f.change(
|
|
fn=lambda s, e, c: update_dashboard(s, e, c),
|
|
inputs=[start_date, end_date, category_filter],
|
|
outputs=[
|
|
revenue_over_time_image,
|
|
revenue_by_category_image,
|
|
top_products_image,
|
|
data_table,
|
|
total_revenue,
|
|
total_orders,
|
|
avg_order_value,
|
|
top_category
|
|
]
|
|
)
|
|
|
|
|
|
dashboard.load(
|
|
fn=lambda: update_dashboard(default_start_date, default_end_date, "All Categories"),
|
|
outputs=[
|
|
revenue_over_time_image,
|
|
revenue_by_category_image,
|
|
top_products_image,
|
|
data_table,
|
|
total_revenue,
|
|
total_orders,
|
|
avg_order_value,
|
|
top_category
|
|
]
|
|
)
|
|
|
|
return dashboard
|
|
|
|
if __name__ == "__main__":
|
|
dashboard = create_dashboard()
|
|
dashboard.launch(share=True) |