stikkiers2 / app.py
vagrillo's picture
Update app.py
f892a57 verified
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import GroundingDinoProcessor
from modeling_grounding_dino import GroundingDinoForObjectDetection
from PIL import Image, ImageDraw, ImageFont
from itertools import cycle
import os
from datetime import datetime
import gradio as gr
import tempfile
# Load model and processor
model_id = "fushh7/llmdet_swin_large_hf"
model_id = "fushh7/llmdet_swin_tiny_hf"
DEVICE = "cpu"
print(f"[INFO] Using device: {DEVICE}")
print(f"[INFO] Loading model from {model_id}...")
processor = GroundingDinoProcessor.from_pretrained(model_id)
model = GroundingDinoForObjectDetection.from_pretrained(model_id).to(DEVICE)
model.eval()
print("[INFO] Model loaded successfully.")
# Pre-defined palette (extend or tweak as you like)
BOX_COLORS = [
"deepskyblue", "red", "lime", "dodgerblue",
"cyan", "magenta", "yellow",
"orange", "chartreuse"
]
def save_cropped_images(original_image, boxes, labels, scores):
"""
Salva ogni regione ritagliata definita dalle bounding box in file temporanei.
:param original_image: Immagine PIL originale
:param boxes: Lista di bounding box [x_min, y_min, x_max, y_max]
:param labels: Lista di etichette per ogni box
:param scores: Lista di punteggi di confidenza
:return: Lista dei percorsi dei file temporanei salvati
"""
saved_paths = []
for i, (box, label, score) in enumerate(zip(boxes, labels, scores)):
# Crea un file temporaneo
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file:
filepath = tmp_file.name
# Ritaglia la regione dall'immagine originale
cropped_img = original_image.crop(box)
# Salva l'immagine ritagliata
cropped_img.save(filepath)
saved_paths.append(filepath)
return saved_paths
def draw_boxes(image, boxes, labels, scores, colors=BOX_COLORS, font_path="arial.ttf", font_size=16):
"""
Draw bounding boxes and labels on a PIL Image.
:param image: PIL Image object
:param boxes: Iterable of [x_min, y_min, x_max, y_max]
:param labels: Iterable of label strings
:param scores: Iterable of scalar confidences (0-1)
:param colors: List/tuple of colour names or RGB tuples
:param font_path: Path to a TTF font for labels
:param font_size: Int size of font to use, default 16
:return: PIL Image with drawn boxes
"""
# Ensure we can iterate colours indefinitely
colour_cycle = cycle(colors)
draw = ImageDraw.Draw(image)
# Pick a font (fallback to default if missing)
try:
font = ImageFont.truetype(font_path, size=font_size)
except IOError:
font = ImageFont.load_default(size=font_size)
# Assign a consistent colour per label (optional)
label_to_colour = {}
for box, label, score in zip(boxes, labels, scores):
# Reuse colour if label seen before, else take next from cycle
colour = label_to_colour.setdefault(label, next(colour_cycle))
x_min, y_min, x_max, y_max = map(int, box)
# Draw rectangle
draw.rectangle([x_min, y_min, x_max, y_max], outline=colour, width=2)
# Compose text
text = f"{label} ({score:.3f})"
text_size = draw.textbbox((0, 0), text, font=font)[2:]
# Draw text background for legibility
bg_coords = [x_min, y_min - text_size[1] - 4,
x_min + text_size[0] + 4, y_min]
draw.rectangle(bg_coords, fill=colour)
# Draw text
draw.text((x_min + 2, y_min - text_size[1] - 2),
text, fill="black", font=font)
return image
def resize_image_max_dimension(image, max_size=4096):
"""
Resize an image so that the longest side is at most max_size pixels,
while maintaining the aspect ratio.
:param image: PIL Image object
:param max_size: Maximum dimension in pixels (default: 1024)
:return: PIL Image object (resized)
"""
width, height = image.size
# Check if resizing is needed
if max(width, height) <= max_size:
return image
# Calculate new dimensions maintaining aspect ratio
ratio = max_size / max(width, height)
new_width = int(width * ratio)
new_height = int(height * ratio)
# Resize the image using high-quality resampling
return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
def detect_and_draw(
img: Image.Image,
text_query: str,
box_threshold: float = 0.14,
text_threshold: float = 0.13,
save_crops: bool = True
):
"""
Detect objects described in `text_query`, draw boxes, return the image and crops.
Note: `text_query` must be lowercase and each concept ends with a dot
(e.g. 'a cat. a remote control.')
"""
# Make sure text is lowered
text_query = text_query.lower()
# If the image size is too large, we make it smaller
img = resize_image_max_dimension(img, max_size=4096)
# Preprocess the image
inputs = processor(images=img, text=text_query, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=box_threshold,
text_threshold=text_threshold,
target_sizes=[img.size[::-1]]
)[0]
img_out = img.copy()
img_out = draw_boxes(
img_out,
boxes = results["boxes"].cpu().numpy(),
labels = results.get("text_labels", results.get("labels", [])),
scores = results["scores"]
)
# Lista per i percorsi dei crop
crop_paths = []
if save_crops:
crop_paths = save_cropped_images(
img,
boxes=results["boxes"].cpu().numpy(),
labels=results.get("text_labels", results.get("labels", [])),
scores=results["scores"]
)
print(f"Generated {len(crop_paths)} cropped images")
return img_out, crop_paths
# Create example list
examples = [
["examples/stickers(1).jpg", "stickers. labels.", 0.24, 0.23],
]
# Funzione per pulire i file temporanei dopo l'uso
def cleanup_temp_files(crop_paths):
for path in crop_paths:
try:
os.unlink(path)
except:
pass
# Create Gradio demo
with gr.Blocks(title="Stikkiers", css=".gradio-container {max-width: 100% !important}") as demo:
gr.Markdown("# Sticker Finder")
gr.Markdown("Upload an image and adjust thresholds to see detections.")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Input Image")
text_query = gr.Textbox(
value="stickers. labels. postcards.",
label="Text Query (lowercase, end each with '.', for example 'a bird. a tree.')"
)
box_threshold = gr.Slider(0.0, 1.0, 0.14, step=0.05, label="Box Threshold")
text_threshold = gr.Slider(0.0, 1.0, 0.13, step=0.05, label="Text Threshold")
submit_btn = gr.Button("Detect")
with gr.Column():
image_output = gr.Image(type="pil", label="Detections")
# Galleria per i crop
gallery = gr.Gallery(
label="Detected Crops",
columns=[4],
rows=[2],
object_fit="contain",
height="auto"
)
# Esempi
gr.Examples(
examples=examples,
inputs=[image_input, text_query, box_threshold, text_threshold],
outputs=[image_output, gallery],
fn=detect_and_draw,
cache_examples=True
)
# Pulsante di submit
submit_btn.click(
fn=detect_and_draw,
inputs=[image_input, text_query, box_threshold, text_threshold],
outputs=[image_output, gallery]
)
# Pulisci i file temporanei quando viene caricato un nuovo esempio
demo.load(
fn=lambda: None,
inputs=None,
outputs=None,
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", share=False)