File size: 7,615 Bytes
f740333
 
 
 
b0a6f33
6db6faf
8c99d65
b0a6f33
 
 
 
 
a66535a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6db6faf
 
 
b0a6f33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f740333
 
 
 
b0a6f33
 
 
 
 
 
 
 
f740333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a66535a
f740333
a66535a
 
 
f740333
 
 
6db6faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f740333
 
 
 
 
a66535a
f740333
 
 
 
 
 
 
a66535a
f740333
a66535a
 
 
50faa2d
6db6faf
 
19c9463
 
 
6db6faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c99d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Tuple
import plotly.express as px
import numpy as np

VOLUME_FACTOR_REGULARIZATION = 0.5
UNSCALED_WEIGHTED_ACCURACY_INTERVAL = (-0.5, 100.5)
SCALED_WEIGHTED_ACCURACY_INTERVAL = (0, 1)

# tools palette as dictionary
tools_palette = {
    "prediction-request-reasoning": "darkorchid",
    "claude-prediction-offline": "rebeccapurple",
    "prediction-request-reasoning-claude": "slateblue",
    "prediction-request-rag-claude": "steelblue",
    "prediction-online": "darkcyan",
    "prediction-offline": "mediumaquamarine",
    "claude-prediction-online": "mediumseagreen",
    "prediction-online-sme": "yellowgreen",
    "prediction-url-cot-claude": "gold",
    "prediction-offline-sme": "orange",
    "prediction-request-rag": "chocolate",
}

HEIGHT = 400
WIDTH = 1100


def scale_value(
    value: float,
    min_max_bounds: Tuple[float, float],
    scale_bounds: Tuple[float, float] = (0, 1),
) -> float:
    """Perform min-max scaling on a value."""
    min_, max_ = min_max_bounds
    current_range = max_ - min_
    # normalize between 0-1
    std = (value - min_) / current_range
    # scale between min_bound and max_bound
    min_bound, max_bound = scale_bounds
    target_range = max_bound - min_bound
    return std * target_range + min_bound


def get_weighted_accuracy(row, global_requests: int):
    """Function to compute the weighted accuracy of a tool"""
    return scale_value(
        (
            row["tool_accuracy"]
            + (row["total_requests"] / global_requests) * VOLUME_FACTOR_REGULARIZATION
        ),
        UNSCALED_WEIGHTED_ACCURACY_INTERVAL,
        SCALED_WEIGHTED_ACCURACY_INTERVAL,
    )


def compute_weighted_accuracy(tools_accuracy: pd.DataFrame):
    global_requests = tools_accuracy.total_requests.sum()
    tools_accuracy["weighted_accuracy"] = tools_accuracy.apply(
        lambda x: get_weighted_accuracy(x, global_requests), axis=1
    )
    return tools_accuracy


def plot_tools_accuracy_graph(tools_accuracy_info: pd.DataFrame):
    tools_accuracy_info = tools_accuracy_info.sort_values(
        by="tool_accuracy", ascending=False
    )
    plt.figure(figsize=(25, 10))
    plot = sns.barplot(
        tools_accuracy_info,
        x="tool_accuracy",
        y="tool",
        hue="tool",
        dodge=False,
        palette=tools_palette,
    )
    plt.xlabel("Mech tool_accuracy (%)", fontsize=20)
    plt.ylabel("tool", fontsize=20)
    plt.tick_params(axis="y", labelsize=12)
    return gr.Plot(value=plot.get_figure())


def plot_tools_accuracy_rotated_graph(tools_accuracy_info: pd.DataFrame):
    tools_accuracy_info = tools_accuracy_info.sort_values(
        by="tool_accuracy", ascending=False
    )
    fig = px.bar(
        tools_accuracy_info,
        x="tool",
        y="tool_accuracy",
        color="tool",
        color_discrete_map=tools_palette,
    )
    fig.update_layout(
        xaxis_title="Tool",
        yaxis_title="Mech tool_accuracy (%)",
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    # fig.update_xaxes(tickangle=45)
    fig.update_xaxes(showticklabels=False)
    return gr.Plot(
        value=fig,
    )


def plot_tools_weighted_accuracy_graph(tools_accuracy_info: pd.DataFrame):
    tools_accuracy_info = tools_accuracy_info.sort_values(
        by="weighted_accuracy", ascending=False
    )
    # Create the Seaborn bar plot
    # sns.set_theme(palette="viridis")
    plt.figure(figsize=(25, 10))
    plot = sns.barplot(
        tools_accuracy_info,
        x="weighted_accuracy",
        y="tool",
        hue="tool",
        dodge=False,
        palette=tools_palette,
    )
    plt.xlabel("Weighted accuracy metric", fontsize=20)
    plt.ylabel("tool", fontsize=20)
    plt.tick_params(axis="y", labelsize=12)
    return gr.Plot(value=plot.get_figure())


def plot_tools_weighted_accuracy_rotated_graph(
    tools_accuracy_info: pd.DataFrame,
) -> gr.Plot:
    tools_accuracy_info = tools_accuracy_info.sort_values(
        by="weighted_accuracy", ascending=False
    )
    fig = px.bar(
        tools_accuracy_info,
        x="tool",
        y="weighted_accuracy",
        color="tool",
        color_discrete_map=tools_palette,
    )
    fig.update_layout(
        xaxis_title="Tool",
        yaxis_title="Weighted accuracy metric",
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    # fig.update_xaxes(tickangle=45)
    fig.update_xaxes(showticklabels=False)
    return gr.Plot(
        value=fig,
    )


def plot_mech_requests_topthree_tools(
    daily_mech_requests: pd.DataFrame, tools_accuracy_info: pd.DataFrame, top: int
):
    """Function to plot the percentage of mech requests from the top three tools"""
    # Get the top three tools
    top_tools = tools_accuracy_info.sort_values(
        by="tool_accuracy", ascending=False
    ).head(top)
    top_tools = top_tools.tool.tolist()
    # Filter the daily mech requests for the top three tools
    daily_mech_requests_local_copy = daily_mech_requests.copy()
    daily_mech_requests_local_copy = daily_mech_requests_local_copy[
        daily_mech_requests_local_copy["market_creator"] == "all"
    ]
    # Get the daily total of mech requests no matter the tool
    total_daily_mech_requests = (
        daily_mech_requests_local_copy.groupby(["request_date"])
        .agg({"total_mech_requests": "sum"})
        .reset_index()
    )
    print("total_daily_mech_requests", total_daily_mech_requests.head())
    total_daily_mech_requests.rename(
        columns={"total_mech_requests": "total_daily_mech_requests"},
        inplace=True,
    )
    # Merge the total daily mech requests with the daily mech requests
    daily_mech_requests_local_copy = pd.merge(
        daily_mech_requests_local_copy,
        total_daily_mech_requests,
        on="request_date",
        how="left",
    )
    # Compute the percentage of mech requests for each tool
    daily_mech_requests_local_copy["percentage"] = (
        daily_mech_requests_local_copy["total_mech_requests"]
        / daily_mech_requests_local_copy["total_daily_mech_requests"]
    ) * 100

    daily_mech_requests_local_copy = daily_mech_requests_local_copy[
        daily_mech_requests_local_copy.tool.isin(top_tools)
    ]

    # remove the market_creator column
    daily_mech_requests_local_copy = daily_mech_requests_local_copy.drop(
        columns=["market_creator"]
    )

    # Create a pivot table to get the total mech requests per tool
    pivoted = daily_mech_requests_local_copy.pivot(
        index="request_date", columns="tool", values="percentage"
    )
    # Sort the columns for each row independently
    sorted_values = np.sort(pivoted.values, axis=1)[
        :, ::-1
    ]  # sort and reverse (descending)
    sorted_columns = np.argsort(pivoted.values, axis=1)[:, ::-1]  # get sorting indices

    sorted_df = pd.DataFrame(
        sorted_values,
        index=pivoted.index,
        columns=[
            pivoted.columns[i] for i in sorted_columns[0]
        ],  # use first row's order
    )

    sorted_long = sorted_df.reset_index().melt(
        id_vars=["request_date"], var_name="tool", value_name="percentage"
    )

    fig = px.bar(
        sorted_long,
        x="request_date",
        y="percentage",
        color="tool",
        color_discrete_map=tools_palette,
    )
    fig.update_layout(
        xaxis_title="Day of the request",
        yaxis_title="Percentage of Total daily mech requests",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    return gr.Plot(value=fig)