Spaces:
Sleeping
Sleeping
File size: 7,326 Bytes
feb2540 baa583b d3a33c8 23381bb baa583b b40e2c2 feb2540 6969959 23381bb d638a1c 23381bb baa583b feb2540 baa583b feb2540 baa583b feb2540 baa583b feb2540 baa583b 6969959 feb2540 23381bb d3a33c8 cc9cf8b feb2540 cc9cf8b feb2540 6969959 feb2540 baa583b feb2540 6969959 feb2540 ecd8944 feb2540 ecd8944 feb2540 ecd8944 feb2540 ecd8944 feb2540 81d02b5 feb2540 6969959 c43bc47 feb2540 6969959 c43bc47 feb2540 6969959 feb2540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
#!/usr/bin/env python3
# app.py β CGD Survey Explorer (keyword + semantic in one table)
import os, io, json, gc
import streamlit as st
import pandas as pd
import psycopg2
import boto3, torch
from sentence_transformers import SentenceTransformer, util
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1) Database credentials (HF Secrets or env vars)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
DB_HOST = os.getenv("DB_HOST")
DB_PORT = os.getenv("DB_PORT", "5432")
DB_NAME = os.getenv("DB_NAME")
DB_USER = os.getenv("DB_USER")
DB_PASSWORD = os.getenv("DB_PASSWORD")
@st.cache_data(ttl=600)
def get_data() -> pd.DataFrame:
"""Read survey_info once every 10 min."""
conn = psycopg2.connect(
host=DB_HOST, port=DB_PORT,
dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD,
sslmode="require",
)
df_ = pd.read_sql_query("""
SELECT id, country, year, section,
question_code, question_text,
answer_code, answer_text
FROM survey_info;
""", conn)
conn.close()
return df_
df = get_data()
row_lookup = {row.id: i for i, row in df.iterrows()}
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2) Cached resources
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@st.cache_resource
def load_embeddings():
"""Download ids + embedding tensor from S3 once per session."""
BUCKET, KEY = "cgd-embeddings-bucket", "survey_info_embeddings.pt"
buf = io.BytesIO()
boto3.client("s3").download_fileobj(BUCKET, KEY, buf)
buf.seek(0)
ckpt = torch.load(buf, map_location="cpu")
buf.close(); gc.collect()
if not (isinstance(ckpt, dict) and {"ids", "embeddings"} <= ckpt.keys()):
st.error("Bad checkpoint format in survey_info_embeddings.pt"); st.stop()
return ckpt["ids"], ckpt["embeddings"]
ids_list, emb_tensor = load_embeddings()
@st.cache_resource
def get_st_model():
"""Mini-LM sentence-transformer pinned to CPU (avoids meta-tensor bug)."""
return SentenceTransformer(
"sentence-transformers/all-MiniLM-L6-v2",
device="cpu",
)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3) Streamlit UI
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.title("π CGD Survey Explorer (Live DB)")
st.sidebar.header("π Filter Questions")
country_opts = sorted(df["country"].dropna().unique())
year_opts = sorted(df["year"].dropna().unique())
sel_countries = st.sidebar.multiselect("Select Country/Countries", country_opts)
sel_years = st.sidebar.multiselect("Select Year(s)", year_opts)
keyword = st.sidebar.text_input("Keyword Search (Question / Answer / Code)")
group_by_q = st.sidebar.checkbox("Group by Question Text")
# ββ Semantic search panel
st.sidebar.markdown("---")
st.sidebar.subheader("π§ Semantic Search")
sem_query = st.sidebar.text_input("Enter a natural-language query")
search_clicked = st.sidebar.button("Search", disabled=not sem_query.strip())
# ββ Always build the keyword/dropdown subset
filtered = df[
(df["country"].isin(sel_countries) if sel_countries else True) &
(df["year"].isin(sel_years) if sel_years else True) &
(
df["question_text"].str.contains(keyword, case=False, na=False) |
df["answer_text"].str.contains(keyword, case=False, na=False) |
df["question_code"].astype(str).str.contains(keyword, case=False, na=False)
)
]
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4) Semantic Search β merged table
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if search_clicked:
with st.spinner("Embedding & searchingβ¦"):
model = get_st_model()
q_vec = model.encode(
sem_query.strip(),
convert_to_tensor=True,
device="cpu"
).cpu()
sims = util.cos_sim(q_vec, emb_tensor)[0]
top_vals, top_idx = torch.topk(sims, k=50) # 50 candidates
sem_ids = [ids_list[i] for i in top_idx.tolist()]
sem_rows = df.loc[df["id"].isin(sem_ids)].copy()
score_map = dict(zip(sem_ids, top_vals.tolist()))
sem_rows["Score"] = sem_rows["id"].map(score_map)
sem_rows = sem_rows.sort_values("Score", ascending=False)
# rows that matched keyword/dropdown but not semantic
remainder = filtered.loc[~filtered["id"].isin(sem_ids)].copy()
remainder["Score"] = "" # blank score
combined = pd.concat([sem_rows, remainder], ignore_index=True)
st.subheader(f"π Combined Results ({len(combined)})")
st.dataframe(
combined[["Score", "country", "year", "question_text", "answer_text"]],
use_container_width=True,
)
st.stop() # skip original display logic below when semantic ran
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 5) Original display (keyword / filters only)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if group_by_q:
st.subheader("π Grouped by Question Text")
grouped = (
filtered.groupby("question_text")
.agg({
"country": lambda x: sorted(set(x)),
"year": lambda x: sorted(set(x)),
"answer_text": lambda x: list(x)[:3]
})
.reset_index()
.rename(columns={
"country": "Countries",
"year": "Years",
"answer_text": "Sample Answers"
})
)
st.dataframe(grouped, use_container_width=True)
if grouped.empty:
st.info("No questions found with current filters.")
else:
hdr = []
if sel_countries: hdr.append("Countries: " + ", ".join(sel_countries))
if sel_years: hdr.append("Years: " + ", ".join(map(str, sel_years)))
st.markdown("### Results for " + (" | ".join(hdr) if hdr else "All Countries and Years"))
st.dataframe(
filtered[["country", "year", "question_text", "answer_text"]],
use_container_width=True,
)
if filtered.empty:
st.info("No matching questions found.")
|