File size: 3,366 Bytes
797d27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import streamlit as st
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
import os

# Load the model
MODEL_PATH = "/home/petpooja-504/Desktop/cnn/final_model.keras"
model = tf.keras.models.load_model(MODEL_PATH)

# Define the class names directly for the Food-101 dataset
CLASS_NAMES = [
    'apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare', 'beet_salad', 'beignets',
    'bibimbap', 'bread_pudding', 'breakfast_burrito', 'bruschetta', 'caesar_salad', 'cannoli', 'caprese_salad',
    'carrot_cake', 'ceviche', 'cheese_plate', 'cheesecake', 'chicken_curry', 'chicken_quesadilla',
    'chicken_wings', 'chocolate_cake', 'chocolate_mousse', 'churros', 'clam_chowder', 'club_sandwich',
    'crab_cakes', 'creme_brulee', 'croque_madame', 'cup_cakes', 'deviled_eggs', 'donuts', 'dumplings',
    'edamame', 'eggs_benedict', 'escargots', 'falafel', 'filet_mignon', 'fish_and_chips', 'foie_gras',
    'french_fries', 'french_onion_soup', 'french_toast', 'fried_calamari', 'fried_rice', 'frozen_yogurt',
    'garlic_bread', 'gnocchi', 'greek_salad', 'grilled_cheese_sandwich', 'grilled_salmon', 'guacamole',
    'gyoza', 'hamburger', 'hot_and_sour_soup', 'hot_dog', 'huevos_rancheros', 'hummus', 'ice_cream',
    'lasagna', 'lobster_bisque', 'lobster_roll_sandwich', 'macaroni_and_cheese', 'macarons', 'miso_soup',
    'mussels', 'nachos', 'omelette', 'onion_rings', 'oysters', 'pad_thai', 'paella', 'pancakes', 'panna_cotta',
    'peking_duck', 'pho', 'pizza', 'pork_chop', 'poutine', 'prime_rib', 'pulled_pork_sandwich', 'ramen',
    'ravioli', 'red_velvet_cake', 'risotto', 'samosa', 'sashimi', 'scallops', 'seaweed_salad', 'shrimp_and_grits',
    'spaghetti_bolognese', 'spaghetti_carbonara', 'spring_rolls', 'steak', 'strawberry_shortcake', 'sushi',
    'tacos', 'takoyaki', 'tiramisu', 'tuna_tartare', 'waffles'
]



# Define the function to predict the image
# Define the function to predict the image
def predict_image(img_path):
    # Load and preprocess the image
    img = image.load_img(img_path, target_size=(224, 224))  # Resize to match model's expected input size
    img_array = image.img_to_array(img)  # Convert image to array
    img_array = np.expand_dims(img_array, axis=0)  # Add batch dimension
    img_array = img_array / 255.0  # Normalize the image as done during training

    # Make prediction
    predictions = model.predict(img_array)

    # Get prediction probabilities
    prediction_probs = predictions[0]  # Prediction probabilities
    predicted_class_index = np.argmax(prediction_probs)
    predicted_class = CLASS_NAMES[predicted_class_index]  # Fetch the class name

    return predicted_class



# Streamlit UI components
st.title("Food-101 Classification Model")
st.write("Upload an image of food to predict its class.")

# Upload image
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:
    # Display the uploaded image
    st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)

    # Save the image temporarily
    img_path = "uploaded_image.jpg"
    with open(img_path, "wb") as f:
        f.write(uploaded_file.getbuffer())

    # Make prediction
    predicted_class = predict_image(img_path)

    # Display the predicted class
    st.write(f"Predicted Class: {predicted_class}")