Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 3,366 Bytes
			
			| 797d27f | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | import streamlit as st
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
import os
# Load the model
MODEL_PATH = "/home/petpooja-504/Desktop/cnn/final_model.keras"
model = tf.keras.models.load_model(MODEL_PATH)
# Define the class names directly for the Food-101 dataset
CLASS_NAMES = [
    'apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare', 'beet_salad', 'beignets',
    'bibimbap', 'bread_pudding', 'breakfast_burrito', 'bruschetta', 'caesar_salad', 'cannoli', 'caprese_salad',
    'carrot_cake', 'ceviche', 'cheese_plate', 'cheesecake', 'chicken_curry', 'chicken_quesadilla',
    'chicken_wings', 'chocolate_cake', 'chocolate_mousse', 'churros', 'clam_chowder', 'club_sandwich',
    'crab_cakes', 'creme_brulee', 'croque_madame', 'cup_cakes', 'deviled_eggs', 'donuts', 'dumplings',
    'edamame', 'eggs_benedict', 'escargots', 'falafel', 'filet_mignon', 'fish_and_chips', 'foie_gras',
    'french_fries', 'french_onion_soup', 'french_toast', 'fried_calamari', 'fried_rice', 'frozen_yogurt',
    'garlic_bread', 'gnocchi', 'greek_salad', 'grilled_cheese_sandwich', 'grilled_salmon', 'guacamole',
    'gyoza', 'hamburger', 'hot_and_sour_soup', 'hot_dog', 'huevos_rancheros', 'hummus', 'ice_cream',
    'lasagna', 'lobster_bisque', 'lobster_roll_sandwich', 'macaroni_and_cheese', 'macarons', 'miso_soup',
    'mussels', 'nachos', 'omelette', 'onion_rings', 'oysters', 'pad_thai', 'paella', 'pancakes', 'panna_cotta',
    'peking_duck', 'pho', 'pizza', 'pork_chop', 'poutine', 'prime_rib', 'pulled_pork_sandwich', 'ramen',
    'ravioli', 'red_velvet_cake', 'risotto', 'samosa', 'sashimi', 'scallops', 'seaweed_salad', 'shrimp_and_grits',
    'spaghetti_bolognese', 'spaghetti_carbonara', 'spring_rolls', 'steak', 'strawberry_shortcake', 'sushi',
    'tacos', 'takoyaki', 'tiramisu', 'tuna_tartare', 'waffles'
]
# Define the function to predict the image
# Define the function to predict the image
def predict_image(img_path):
    # Load and preprocess the image
    img = image.load_img(img_path, target_size=(224, 224))  # Resize to match model's expected input size
    img_array = image.img_to_array(img)  # Convert image to array
    img_array = np.expand_dims(img_array, axis=0)  # Add batch dimension
    img_array = img_array / 255.0  # Normalize the image as done during training
    # Make prediction
    predictions = model.predict(img_array)
    # Get prediction probabilities
    prediction_probs = predictions[0]  # Prediction probabilities
    predicted_class_index = np.argmax(prediction_probs)
    predicted_class = CLASS_NAMES[predicted_class_index]  # Fetch the class name
    return predicted_class
# Streamlit UI components
st.title("Food-101 Classification Model")
st.write("Upload an image of food to predict its class.")
# Upload image
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
    # Display the uploaded image
    st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
    # Save the image temporarily
    img_path = "uploaded_image.jpg"
    with open(img_path, "wb") as f:
        f.write(uploaded_file.getbuffer())
    # Make prediction
    predicted_class = predict_image(img_path)
    # Display the predicted class
    st.write(f"Predicted Class: {predicted_class}")
 |