Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# Use a pipeline as a high-level helper | |
pipe = pipeline("text-generation", model="vc3vc3/qwen3-0.6B-finetune") | |
messages = [ | |
{"role": "user", "content": "Who are you? 用中文回答,风格调皮一些。"}, | |
] | |
pipe(messages) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# 拼接历史消息和当前消息为 prompt | |
prompt = system_message + "\n" | |
for val in history: | |
if val[0]: | |
prompt += f"用户: {val[0]}\n" | |
if val[1]: | |
prompt += f"助手: {val[1]}\n" | |
prompt += f"用户: {message}\n助手:" | |
# 使用 pipe 生成回复 | |
response = "" | |
for out in pipe( | |
prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
return_full_text=False, | |
truncation=True, | |
stream=True, | |
): | |
token = out["generated_text"] if isinstance(out, dict) and "generated_text" in out else str(out) | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |