qwen-z-relative / app.py
vc3vc3's picture
Update app.py
faaec3e verified
import gradio as gr
from transformers import pipeline
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# Use a pipeline as a high-level helper
pipe = pipeline("text-generation", model="vc3vc3/qwen3-0.6B-finetune")
messages = [
{"role": "user", "content": "Who are you? 用中文回答,风格调皮一些。"},
]
pipe(messages)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# 拼接历史消息和当前消息为 prompt
prompt = system_message + "\n"
for val in history:
if val[0]:
prompt += f"用户: {val[0]}\n"
if val[1]:
prompt += f"助手: {val[1]}\n"
prompt += f"用户: {message}\n助手:"
# 使用 pipe 生成回复
response = ""
for out in pipe(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
return_full_text=False,
truncation=True,
stream=True,
):
token = out["generated_text"] if isinstance(out, dict) and "generated_text" in out else str(out)
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()