Spaces:
Sleeping
Sleeping
File size: 3,844 Bytes
1639c46 bac027d 014ba5e f39aadc 014ba5e 01af800 1639c46 7307761 1639c46 014ba5e 01af800 623a39b 014ba5e 623a39b f39aadc 01af800 014ba5e 01af800 1639c46 01af800 7be9d95 1639c46 1692b33 1639c46 01af800 1639c46 7be9d95 1639c46 7be9d95 1639c46 4d068a9 7307761 014ba5e 7be9d95 1639c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import gradio
import argparse
import os
import boto3
from datetime import datetime
from utils import generate, send_to_s3
from models import get_tiny_llama, response_tiny_llama
from constants import css, js_code, js_light
MERA_table = None
TINY_LLAMA = None
S3_SESSION = None
def giga_gen(content):
res = generate(content,'auth_token.json')
send_to_s3(res, f'giga_{str(datetime.now()).replace(" ", "_")}.json', S3_SESSION)
return res
def tiny_gen(content):
res = response_tiny_llama(TINY_LLAMA, content)
send_to_s3(res, f'tiny_{str(datetime.now()).replace(" ", "_")}.json', S3_SESSION)
return res
def tab_arena():
with gradio.Row():
with gradio.Column():
gradio.Interface(fn=giga_gen, inputs="text", outputs="text", allow_flagging=False, title='Giga') # arena =
with gradio.Column():
gradio.Interface(fn=tiny_gen, inputs="text", outputs="text", allow_flagging=False, title='TinyLlama') # arena =
# arena.launch()
with open("test.md", "r") as f:
TEST_MD = f.read()
available_models = ["GigaChat", ""] # list(model_info.keys())
def build_demo():
# global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
with gradio.Blocks(theme=gradio.themes.Base(), css=css, js=js_light) as demo:
# gradio.HTML(BANNER, elem_id="banner")
# gradio.Markdown(HEADER_MD.replace("{model_num}", str(len(original_dfs["-1"]))), elem_classes="markdown-text")
with gradio.Tabs(elem_classes="tab-buttons") as tabs:
with gradio.TabItem("πΌ MERA leaderboard", elem_id="od-benchmark-tab-table", id=0):
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details")
# _tab_leaderboard()
with gradio.TabItem("π SBS by categories and criteria", elem_id="od-benchmark-tab-table", id=1):
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details")
with gradio.TabItem("π₯ Model arena", elem_id="od-benchmark-tab-table", id=2):
tab_arena()
# _tab_explore()
with gradio.TabItem("πͺ About MERA", elem_id="od-benchmark-tab-table", id=3):
gradio.Markdown(TEST_MD, elem_classes="markdown-text")
# gr.Markdown(f"Last updated on **{LAST_UPDATED}** | [Link to V1-legacy](https://huggingface.co/spaces/allenai/WildBench-V1-legacy)", elem_classes="markdown-text-small")
# with gr.Row():
# with gr.Accordion("π Citation", open=False, elem_classes="accordion-label"):
# gr.Textbox(
# value=CITATION_TEXT,
# lines=7,
# label="Copy the BibTeX snippet to cite this source",
# elem_id="citation-button",
# show_copy_button=True)
# ).style(show_copy_button=True)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
# parser.add_argument("--bench_table", help="Path to MERA table", default="data_dir/MERA_jun2024.jsonl")
args = parser.parse_args()
# data_load(args.result_file)
# TYPES = ["number", "markdown", "number"]
TINY_LLAMA = get_tiny_llama()
try:
session = boto3.session.Session()
S3_SESSION = session.client(
service_name='s3',
endpoint_url=os.getenv('S3_ENDPOINT'),
aws_access_key_id=os.getenv('S3_ENDPOINT'),
aws_secret_access_key=os.getenv('S3_ENDPOINT'),
)
except:
print('Failed to start s3 session')
demo = build_demo()
demo.launch(share=args.share, height=3000, width="110%") # share=args.share
# demo = gradio.Interface(fn=gen, inputs="text", outputs="text")
# demo.launch()
|