Spaces:
Sleeping
Sleeping
File size: 3,221 Bytes
1639c46 bac027d f39aadc 1639c46 01af800 1639c46 01af800 1639c46 01af800 623a39b f39aadc 01af800 1639c46 01af800 7be9d95 1639c46 1692b33 1639c46 01af800 1639c46 7be9d95 1639c46 7be9d95 1639c46 4d068a9 7be9d95 1639c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import gradio
import argparse
import os
from utils import generate
from models import get_tiny_llama, response_tiny_llama
from constants import css, js_code, js_light
MERA_table = None
TINY_LLAMA = get_tiny_llama()
def giga_gen(content):
res = generate(content,'auth_token.json')
return res
def tiny_gen(content):
res = response_tiny_llama(TINY_LLAMA, content)
return res
def tab_arena():
with gradio.Row():
with gradio.Column():
gradio.Interface(fn=giga_gen, inputs="text", outputs="text", allow_flagging=False, title='Giga') # arena =
with gradio.Column():
gradio.Interface(fn=tiny_gen, inputs="text", outputs="text", allow_flagging=False, title='TinyLlama') # arena =
# arena.launch()
with open("test.md", "r") as f:
TEST_MD = f.read()
available_models = ["GigaChat", ""] # list(model_info.keys())
def build_demo():
# global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
with gradio.Blocks(theme=gradio.themes.Base(), css=css, js=js_light) as demo:
# gradio.HTML(BANNER, elem_id="banner")
# gradio.Markdown(HEADER_MD.replace("{model_num}", str(len(original_dfs["-1"]))), elem_classes="markdown-text")
with gradio.Tabs(elem_classes="tab-buttons") as tabs:
with gradio.TabItem("πΌ MERA leaderboard", elem_id="od-benchmark-tab-table", id=0):
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details")
# _tab_leaderboard()
with gradio.TabItem("π SBS by categories and criteria", elem_id="od-benchmark-tab-table", id=1):
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details")
with gradio.TabItem("π₯ Model arena", elem_id="od-benchmark-tab-table", id=2):
tab_arena()
# _tab_explore()
with gradio.TabItem("πͺ About MERA", elem_id="od-benchmark-tab-table", id=3):
gradio.Markdown(TEST_MD, elem_classes="markdown-text")
# gr.Markdown(f"Last updated on **{LAST_UPDATED}** | [Link to V1-legacy](https://huggingface.co/spaces/allenai/WildBench-V1-legacy)", elem_classes="markdown-text-small")
# with gr.Row():
# with gr.Accordion("π Citation", open=False, elem_classes="accordion-label"):
# gr.Textbox(
# value=CITATION_TEXT,
# lines=7,
# label="Copy the BibTeX snippet to cite this source",
# elem_id="citation-button",
# show_copy_button=True)
# ).style(show_copy_button=True)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
# parser.add_argument("--bench_table", help="Path to MERA table", default="data_dir/MERA_jun2024.jsonl")
args = parser.parse_args()
# data_load(args.result_file)
# TYPES = ["number", "markdown", "number"]
demo = build_demo()
demo.launch(share=args.share, height=3000, width="110%") # share=args.share
# demo = gradio.Interface(fn=gen, inputs="text", outputs="text")
# demo.launch()
|