Spaces:
Sleeping
Sleeping
File size: 6,672 Bytes
1639c46 bac027d 014ba5e c03435f f39aadc 014ba5e 2375d69 1639c46 7307761 1639c46 014ba5e 7f3196a deb74eb 7815cda deb74eb e7d646f bd30708 f39aadc 7f3196a 2375d69 e7d646f bd30708 cce3c9c 1639c46 01af800 cce3c9c 01af800 cce3c9c 01af800 7be9d95 1639c46 c03435f d8ef990 c03435f d8ef990 8f4c6d6 d8ef990 8f4c6d6 d8ef990 8f4c6d6 d8ef990 c03435f 1692b33 1639c46 01af800 1639c46 7be9d95 1639c46 c03435f 1639c46 7be9d95 1639c46 4d068a9 2375d69 014ba5e 9e16c0f 014ba5e 7be9d95 1639c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio
import argparse
import os
import boto3
from datetime import datetime
import pandas as pd
from utils import generate, send_to_s3
from models import get_tinyllama, response_tinyllama
from constants import css, js_code, js_light
MERA_table = None
TINY_LLAMA = None
S3_SESSION = None
def giga_gen(content, chat_history):
chat_history.append([content])
res = generate(chat_history,'auth_token.json')
chat_history[-1].append(res)
send_to_s3(res, f'protobench/giga_{str(datetime.now()).replace(" ", "_")}.json', S3_SESSION)
return '', chat_history
def tiny_gen(content, chat_history):
chat_history.append([content])
res = response_tinyllama(TINY_LLAMA, content)
chat_history[-1].append(res)
send_to_s3(res, f'protobench/tiny_{str(datetime.now()).replace(" ", "_")}.json', S3_SESSION)
return '', chat_history
def tab_arena():
with gradio.Row():
with gradio.Column():
chatbot_left = gradio.Chatbot()
with gradio.Column():
chatbot_right = gradio.Chatbot()
with gradio.Row():
gradio.Button('Both Good')
gradio.Button('Left Better')
gradio.Button('Right Better')
gradio.Button('Both Bad')
msg = gradio.Textbox()
clear = gradio.ClearButton([msg, chatbot_left, chatbot_right])
# def respond(message, chat_history):
# bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
# chat_history.append((message, bot_message))
# time.sleep(2)
# return "", chat_history
msg.submit(giga_gen, [msg, chatbot_left], [msg, chatbot_left])
msg.submit(tiny_gen, [msg, chatbot_right], [msg, chatbot_right])
# with gradio.Column():
# gradio.ChatInterface(
# fn=giga_gen,
# examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}],
# title="Giga",
# multimodal=True,
# )
# with gradio.Column():
# gradio.ChatInterface(
# fn=tiny_gen,
# examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}],
# title="Tiny",
# multimodal=True,
# )
# with gradio.Column():
# gradio.Interface(fn=giga_gen, inputs="text", outputs="text", allow_flagging=False, title='Giga') # arena =
# with gradio.Column():
# gradio.Interface(fn=tiny_gen, inputs="text", outputs="text", allow_flagging=False, title='TinyLlama') # arena =
# arena.launch()
def tab_leaderboard():
df = pd.DataFrame({
"Model" : ['A', 'B', 'C',],
"Test 1" : [0, 1, 0],
"Test 2" : [1, 0, 1,],
})
# Function to apply text color
def highlight_cols(x):
df = x.copy()
# df.loc[:, :] = 'color: purple'
df[['Model']] = 'color: green'
return df
# Applying the style function
# s = df.style.apply(highlight_cols, axis = None)
# Displaying the styled dataframe in Gradio
with gradio.TabItem("Autogen Metrics", elem_id="od-benchmark-tab-table-ablation", id=0, elem_classes="subtab"):
with gradio.Blocks() as demo:
gradio.DataFrame(df)
with gradio.TabItem("Autometrics", elem_id="od-benchmark-tab-table-ablation", id=1, elem_classes="subtab"):
with gradio.Blocks() as demo:
gradio.DataFrame(df)
with gradio.TabItem("SBS metrics", elem_id="od-benchmark-tab-table-ablation", id=2, elem_classes="subtab"):
with gradio.Blocks() as demo:
gradio.DataFrame(df)
with gradio.TabItem("Arena ELO rating", elem_id="od-benchmark-tab-table-ablation", id=3, elem_classes="subtab"):
with gradio.Blocks() as demo:
gradio.DataFrame(df)
with open("test.md", "r") as f:
TEST_MD = f.read()
available_models = ["GigaChat", ""] # list(model_info.keys())
def build_demo():
# global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
with gradio.Blocks(theme=gradio.themes.Base(), css=css, js=js_light) as demo:
# gradio.HTML(BANNER, elem_id="banner")
# gradio.Markdown(HEADER_MD.replace("{model_num}", str(len(original_dfs["-1"]))), elem_classes="markdown-text")
with gradio.Tabs(elem_classes="tab-buttons") as tabs:
with gradio.TabItem("πΌ MERA leaderboard", elem_id="od-benchmark-tab-table", id=0):
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details")
tab_leaderboard()
with gradio.TabItem("π SBS by categories and criteria", elem_id="od-benchmark-tab-table", id=1):
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details")
with gradio.TabItem("π₯ Model arena", elem_id="od-benchmark-tab-table", id=2):
tab_arena()
# _tab_explore()
with gradio.TabItem("πͺ About MERA", elem_id="od-benchmark-tab-table", id=3):
gradio.Markdown(TEST_MD, elem_classes="markdown-text")
# gr.Markdown(f"Last updated on **{LAST_UPDATED}** | [Link to V1-legacy](https://huggingface.co/spaces/allenai/WildBench-V1-legacy)", elem_classes="markdown-text-small")
# with gr.Row():
# with gr.Accordion("π Citation", open=False, elem_classes="accordion-label"):
# gr.Textbox(
# value=CITATION_TEXT,
# lines=7,
# label="Copy the BibTeX snippet to cite this source",
# elem_id="citation-button",
# show_copy_button=True)
# ).style(show_copy_button=True)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
# parser.add_argument("--bench_table", help="Path to MERA table", default="data_dir/MERA_jun2024.jsonl")
args = parser.parse_args()
# data_load(args.result_file)
# TYPES = ["number", "markdown", "number"]
TINY_LLAMA = get_tinyllama()
try:
session = boto3.session.Session()
S3_SESSION = session.client(
service_name='s3',
endpoint_url=os.getenv('S3_ENDPOINT'),
aws_access_key_id=os.getenv('S3_ACCESS_KEY'),
aws_secret_access_key=os.getenv('S3_SECRET_KEY'),
)
except:
print('Failed to start s3 session')
demo = build_demo()
demo.launch(share=args.share, height=3000, width="110%") # share=args.share
# demo = gradio.Interface(fn=gen, inputs="text", outputs="text")
# demo.launch()
|