Spaces:
Sleeping
Sleeping
File size: 9,677 Bytes
1639c46 bac027d 014ba5e c03435f 9540a56 f39aadc 4fa4c7b 1639c46 4fa4c7b 1847ea5 4fa4c7b 014ba5e 4fa4c7b 59904b9 451712e 4fa4c7b fa1a2c3 4fa4c7b 1847ea5 4fa4c7b 409cbac 451712e 409cbac 4fa4c7b 6934609 4fa4c7b 6f92fa3 1639c46 4fa4c7b 01af800 7496919 cce3c9c 01af800 7496919 cce3c9c 65408a7 cce3c9c df22c76 4fa4c7b 4bea324 3bef8f9 8586e70 df22c76 4fa4c7b 9813584 4fa4c7b 9813584 4fa4c7b 5d15a5a d629b6c df22c76 4fa4c7b cce3c9c 01af800 7be9d95 1639c46 c03435f d8ef990 c03435f d8ef990 8f4c6d6 d8ef990 8f4c6d6 d8ef990 8f4c6d6 d8ef990 c03435f 1692b33 1639c46 7be9d95 1639c46 c03435f 1639c46 7be9d95 1639c46 4d068a9 014ba5e 9e16c0f 014ba5e 4fa4c7b 1639c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import gradio
import argparse
import os
import boto3
import pandas as pd
from copy import copy
import queue
from constants import css, js_code, js_light
from utils import model_response, clear_chat
from models import get_tinyllama, get_qwen2ins1b, GigaChat, response_gigachat, response_qwen2ins1b, response_tinyllama
INIT_MODELS = dict()
S3_SESSION = None
CURRENT_MODELS = queue.LifoQueue()
MODEL_LIB = {'TINYLLAMA': get_tinyllama, "QWEN2INS1B": get_qwen2ins1b, "RUBASE": GigaChat.get_giga}
GEN_LIB = {'TINYLLAMA': response_tinyllama, "QWEN2INS1B": response_qwen2ins1b, "RUBASE": response_gigachat}
def model_gen(
content,
chat_history,
model_name: str,
top_p,
temp,
max_tokens,
no_context=False
):
global INIT_MODELS, S3_SESSION, GEN_LIB, MODEL_LIB
model_manager(model_name, MODEL_LIB, 3)
if content is None:
return '', []
if len(content) == 0:
return '', []
chat_history = chat_history[-1] if no_context and len(chat_history)>1 else chat_history
return model_response(
content,
chat_history,
S3_SESSION,
INIT_MODELS,
GEN_LIB,
model_name,
{"top_p": top_p, "temperature": temp, "max_tokens": max_tokens}
)
def model_regen(
content,
chat_history,
model_name: str,
top_p,
temp,
max_tokens,
no_context=False
):
global INIT_MODELS, S3_SESSION, GEN_LIB, MODEL_LIB
model_manager(model_name, MODEL_LIB, 3)
if chat_history is None:
return '', []
chat_history = chat_history[-1] if no_context else chat_history
content = copy(chat_history[-1][0])
return model_response(
content,
chat_history[:-1],
S3_SESSION,
INIT_MODELS,
GEN_LIB,
model_name,
{"top_p": top_p, "temperature": temp, "max_tokens": max_tokens}
)
def model_manager(
add_model,
model_lib,
max_models=3
):
global INIT_MODELS, CURRENT_MODELS
while CURRENT_MODELS.qsize() >= max_models:
model_del = CURRENT_MODELS.get()
INIT_MODELS[model_del] = None
CURRENT_MODELS.put(add_model)
INIT_MODELS[add_model] = model_lib[add_model]()
def tab_arena():
global S3_SESSION, GEN_LIB, MODEL_LIB, INIT_MODELS, CURRENT_MODELS
with gradio.Row():
with gradio.Column():
model_left = gradio.Dropdown(["TINYLLAMA", "QWEN2INS1B", "RUBASE"], value="TINYLLAMA", interactive=True, multiselect=False, label="Left model")
chatbot_left = gradio.Chatbot()
with gradio.Column():
model_right = gradio.Dropdown(["TINYLLAMA", "QWEN2INS1B", "RUBASE"], value= "RUBASE", interactive=True, multiselect=False, label="Right model")
chatbot_right = gradio.Chatbot()
with gradio.Row():
msg = gradio.Textbox(label='Prompt', placeholder='Put your prompt here')
with gradio.Row():
gradio.Button('Both Good')
gradio.Button('Left Better')
gradio.Button('Right Better')
gradio.Button('Both Bad')
with gradio.Row():
with gradio.Accordion("Parameters", open=False):
no_context = gradio.Checkbox(label="No context", value=False)
top_p = gradio.Slider(label='Top P', minimum=0, maximum=1, value=1, step=0.05, interactive=True)
temp = gradio.Slider(label='Temperature', minimum=0, maximum=1, value=0.7, step=0.05, interactive=True)
max_tokens = gradio.Slider(label='Max ouput tokens', minimum=1, maximum=2048, value=256, step=1, interactive=True)
with gradio.Row():
clear = gradio.ClearButton([msg, chatbot_left, chatbot_right], value='Clear history')
regen_left = gradio.Button(value='Regenerate left answer')
regen_right = gradio.Button(value='Regenerate right answer')
regen_left.click(
model_regen,
[msg, chatbot_left, model_left, top_p, temp, max_tokens, no_context],
[msg, chatbot_left]
)
regen_right.click(
model_regen,
[msg, chatbot_right, model_right, top_p, temp, max_tokens, no_context],
[msg, chatbot_right]
)
with gradio.Blocks():
model_left.change(clear_chat, [], [msg, chatbot_left])
model_right.change(clear_chat, [], [msg, chatbot_right])
msg.submit(
model_gen,
[msg, chatbot_left, model_left, top_p, temp, max_tokens, no_context],
[msg, chatbot_left]
)
msg.submit(
model_gen,
[msg, chatbot_right, model_right, top_p, temp, max_tokens, no_context],
[msg, chatbot_right]
)
# with gradio.Column():
# gradio.ChatInterface(
# fn=giga_gen,
# examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}],
# title="Giga",
# multimodal=True,
# )
# with gradio.Column():
# gradio.ChatInterface(
# fn=tiny_gen,
# examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}],
# title="Tiny",
# multimodal=True,
# )
# with gradio.Column():
# gradio.Interface(fn=giga_gen, inputs="text", outputs="text", allow_flagging=False, title='Giga') # arena =
# with gradio.Column():
# gradio.Interface(fn=tiny_gen, inputs="text", outputs="text", allow_flagging=False, title='TinyLlama') # arena =
# arena.launch()
def tab_leaderboard():
df = pd.DataFrame({
"Model" : ['A', 'B', 'C',],
"Test 1" : [0, 1, 0],
"Test 2" : [1, 0, 1,],
})
# Function to apply text color
def highlight_cols(x):
df = x.copy()
# df.loc[:, :] = 'color: purple'
df[['Model']] = 'color: green'
return df
# Applying the style function
# s = df.style.apply(highlight_cols, axis = None)
# Displaying the styled dataframe in Gradio
with gradio.TabItem("Autogen Metrics", elem_id="od-benchmark-tab-table-ablation", id=0, elem_classes="subtab"):
with gradio.Blocks() as demo:
gradio.DataFrame(df)
with gradio.TabItem("Autometrics", elem_id="od-benchmark-tab-table-ablation", id=1, elem_classes="subtab"):
with gradio.Blocks() as demo:
gradio.DataFrame(df)
with gradio.TabItem("SBS metrics", elem_id="od-benchmark-tab-table-ablation", id=2, elem_classes="subtab"):
with gradio.Blocks() as demo:
gradio.DataFrame(df)
with gradio.TabItem("Arena ELO rating", elem_id="od-benchmark-tab-table-ablation", id=3, elem_classes="subtab"):
with gradio.Blocks() as demo:
gradio.DataFrame(df)
with open("test.md", "r") as f:
TEST_MD = f.read()
def build_demo():
# global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
with gradio.Blocks(theme=gradio.themes.Base(), css=css, js=js_light) as demo:
# gradio.HTML(BANNER, elem_id="banner")
# gradio.Markdown(HEADER_MD.replace("{model_num}", str(len(original_dfs["-1"]))), elem_classes="markdown-text")
with gradio.Tabs(elem_classes="tab-buttons") as tabs:
with gradio.TabItem("πΌ MERA leaderboard", elem_id="od-benchmark-tab-table", id=0):
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details")
tab_leaderboard()
with gradio.TabItem("π SBS by categories and criteria", elem_id="od-benchmark-tab-table", id=1):
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details")
with gradio.TabItem("π₯ Model arena", elem_id="od-benchmark-tab-table", id=2):
tab_arena()
# _tab_explore()
with gradio.TabItem("πͺ About MERA", elem_id="od-benchmark-tab-table", id=3):
gradio.Markdown(TEST_MD, elem_classes="markdown-text")
# gr.Markdown(f"Last updated on **{LAST_UPDATED}** | [Link to V1-legacy](https://huggingface.co/spaces/allenai/WildBench-V1-legacy)", elem_classes="markdown-text-small")
# with gr.Row():
# with gr.Accordion("π Citation", open=False, elem_classes="accordion-label"):
# gr.Textbox(
# value=CITATION_TEXT,
# lines=7,
# label="Copy the BibTeX snippet to cite this source",
# elem_id="citation-button",
# show_copy_button=True)
# ).style(show_copy_button=True)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
# parser.add_argument("--bench_table", help="Path to MERA table", default="data_dir/MERA_jun2024.jsonl")
args = parser.parse_args()
# data_load(args.result_file)
# TYPES = ["number", "markdown", "number"]
try:
session = boto3.session.Session()
S3_SESSION = session.client(
service_name='s3',
endpoint_url=os.getenv('S3_ENDPOINT'),
aws_access_key_id=os.getenv('S3_ACCESS_KEY'),
aws_secret_access_key=os.getenv('S3_SECRET_KEY'),
)
except:
print('Failed to start s3 session')
app = build_demo()
app.launch(share=args.share, height=3000, width="110%") # share=args.share
# demo = gradio.Interface(fn=gen, inputs="text", outputs="text")
# demo.launch()
|