File size: 10,736 Bytes
e90574b 6ef48c6 e90574b 6ef48c6 e90574b 6ef48c6 e90574b 6ef48c6 d454433 6ef48c6 e90574b edda836 531d6f9 e90574b 6ef48c6 e90574b 9d978bc e90574b 531d6f9 f2aca49 531d6f9 36a4f5e 6ef48c6 9d978bc 6ef48c6 9d978bc 6ef48c6 9d978bc 6ef48c6 e90574b 6ef48c6 9d978bc 6ef48c6 e90574b 6ef48c6 36a4f5e 9d978bc 6ef48c6 36a4f5e 9d978bc 6ef48c6 f2aca49 6ef48c6 9d978bc 36a4f5e 9d978bc 36a4f5e 6ef48c6 9d978bc 6ef48c6 9d978bc 36a4f5e 9d978bc 36a4f5e e90574b 6ef48c6 9d978bc 6ef48c6 e90574b 6ef48c6 e90574b 9d978bc 6ef48c6 f2aca49 6ef48c6 4424462 36a4f5e 4424462 9d978bc 36a4f5e 4424462 36a4f5e 4424462 36a4f5e 6ef48c6 9d978bc 6ef48c6 9d978bc e90574b f2aca49 6ef48c6 d454433 1d115f5 6ef48c6 9d978bc 6ef48c6 9d978bc 36a4f5e 9d978bc 6ef48c6 9d978bc 6ef48c6 4e72c55 6ef48c6 9d978bc 1d115f5 6ef48c6 9d978bc 6ef48c6 36a4f5e 6ef48c6 e90574b 6ef48c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
"""
Web Search MCP Server - Feed LLMs with fresh sources
====================================================
Prerequisites
-------------
$ pip install "gradio[mcp]" httpx trafilatura python-dateutil limits
Environment
-----------
export SERPER_API_KEY="YOUR-KEY-HERE"
Usage
-----
python app_mcp.py
Then connect to: http://localhost:7860/gradio_api/mcp/sse
"""
import os
import asyncio
from typing import Optional
from datetime import datetime
import httpx
import trafilatura
import gradio as gr
from dateutil import parser as dateparser
from limits import parse
from limits.aio.storage import MemoryStorage
from limits.aio.strategies import MovingWindowRateLimiter
# Configuration
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
SERPER_SEARCH_ENDPOINT = "https://google.serper.dev/search"
SERPER_NEWS_ENDPOINT = "https://google.serper.dev/news"
HEADERS = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}
# Rate limiting
storage = MemoryStorage()
limiter = MovingWindowRateLimiter(storage)
rate_limit = parse("360/hour")
async def search_web(
query: str, search_type: str = "search", num_results: Optional[int] = 4
) -> str:
"""
Search the web for information or fresh news, returning extracted content.
This tool can perform two types of searches:
- "search" (default): General web search for diverse, relevant content from various sources
- "news": Specifically searches for fresh news articles and breaking stories
Use "news" mode when looking for:
- Breaking news or very recent events
- Time-sensitive information
- Current affairs and latest developments
- Today's/this week's happenings
Use "search" mode (default) for:
- General information and research
- Technical documentation or guides
- Historical information
- Diverse perspectives from various sources
Args:
query (str): The search query. This is REQUIRED. Examples: "apple inc earnings",
"climate change 2024", "AI developments"
search_type (str): Type of search. This is OPTIONAL. Default is "search".
Options: "search" (general web search) or "news" (fresh news articles).
Use "news" for time-sensitive, breaking news content.
num_results (int): Number of results to fetch. This is OPTIONAL. Default is 4.
Range: 1-20. More results = more context but longer response time.
Returns:
str: Formatted text containing extracted content with metadata (title,
source, date, URL, and main text) for each result, separated by dividers.
Returns error message if API key is missing or search fails.
Examples:
- search_web("OpenAI GPT-5", "news") - Get 5 fresh news articles about OpenAI
- search_web("python tutorial", "search") - Get 4 general results about Python (default count)
- search_web("stock market today", "news", 10) - Get 10 news articles about today's market
- search_web("machine learning basics") - Get 4 general search results (all defaults)
"""
if not SERPER_API_KEY:
return "Error: SERPER_API_KEY environment variable is not set. Please set it to use this tool."
# Validate and constrain num_results
if num_results is None:
num_results = 4
num_results = max(1, min(20, num_results))
# Validate search_type
if search_type not in ["search", "news"]:
search_type = "search"
try:
# Check rate limit
if not await limiter.hit(rate_limit, "global"):
print(f"[{datetime.now().isoformat()}] Rate limit exceeded")
return "Error: Rate limit exceeded. Please try again later (limit: 500 requests per hour)."
# Select endpoint based on search type
endpoint = (
SERPER_NEWS_ENDPOINT if search_type == "news" else SERPER_SEARCH_ENDPOINT
)
# Prepare payload
payload = {"q": query, "num": num_results}
if search_type == "news":
payload["type"] = "news"
payload["page"] = 1
async with httpx.AsyncClient(timeout=15) as client:
resp = await client.post(endpoint, headers=HEADERS, json=payload)
if resp.status_code != 200:
return f"Error: Search API returned status {resp.status_code}. Please check your API key and try again."
# Extract results based on search type
if search_type == "news":
results = resp.json().get("news", [])
else:
results = resp.json().get("organic", [])
if not results:
return f"No {search_type} results found for query: '{query}'. Try a different search term or search type."
# Fetch HTML content concurrently
urls = [r["link"] for r in results]
async with httpx.AsyncClient(timeout=20, follow_redirects=True) as client:
tasks = [client.get(u) for u in urls]
responses = await asyncio.gather(*tasks, return_exceptions=True)
# Extract and format content
chunks = []
successful_extractions = 0
for meta, response in zip(results, responses):
if isinstance(response, Exception):
continue
# Extract main text content
body = trafilatura.extract(
response.text, include_formatting=False, include_comments=False
)
if not body:
continue
successful_extractions += 1
print(
f"[{datetime.now().isoformat()}] Successfully extracted content from {meta['link']}"
)
# Format the chunk based on search type
if search_type == "news":
# News results have date and source
try:
date_str = meta.get("date", "")
if date_str:
date_iso = dateparser.parse(date_str, fuzzy=True).strftime(
"%Y-%m-%d"
)
else:
date_iso = "Unknown"
except Exception:
date_iso = "Unknown"
chunk = (
f"## {meta['title']}\n"
f"**Source:** {meta.get('source', 'Unknown')} "
f"**Date:** {date_iso}\n"
f"**URL:** {meta['link']}\n\n"
f"{body.strip()}\n"
)
else:
# Search results don't have date/source but have domain
domain = meta["link"].split("/")[2].replace("www.", "")
chunk = (
f"## {meta['title']}\n"
f"**Domain:** {domain}\n"
f"**URL:** {meta['link']}\n\n"
f"{body.strip()}\n"
)
chunks.append(chunk)
if not chunks:
return f"Found {len(results)} {search_type} results for '{query}', but couldn't extract readable content from any of them. The websites might be blocking automated access."
result = "\n---\n".join(chunks)
summary = f"Successfully extracted content from {successful_extractions} out of {len(results)} {search_type} results for query: '{query}'\n\n---\n\n"
print(
f"[{datetime.now().isoformat()}] Extraction complete: {successful_extractions}/{len(results)} successful for query '{query}'"
)
return summary + result
except Exception as e:
return f"Error occurred while searching: {str(e)}. Please try again or check your query."
# Create Gradio interface
with gr.Blocks(title="Web Search MCP Server") as demo:
gr.HTML(
"""
<div style="background-color: rgba(59, 130, 246, 0.1); border: 1px solid rgba(59, 130, 246, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
<p style="color: rgb(59, 130, 246); margin: 0; font-size: 14px; font-weight: 500;">
π€ Community resource β please use responsibly to keep this service available for everyone
</p>
</div>
"""
)
gr.Markdown(
"""
# π Web Search MCP Server
This MCP server provides web search capabilities to LLMs. It can perform general web searches
or specifically search for fresh news articles, extracting the main content from results.
**Search Types:**
- **General Search**: Diverse results from various sources (blogs, docs, articles, etc.)
- **News Search**: Fresh news articles and breaking stories from news sources
**Note:** This interface is primarily designed for MCP tool usage by LLMs, but you can
also test it manually below.
"""
)
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(
label="Search Query",
placeholder='e.g. "OpenAI news", "climate change 2024", "AI developments"',
info="Required: Enter your search query",
)
with gr.Column(scale=1):
search_type_input = gr.Radio(
choices=["search", "news"],
value="search",
label="Search Type",
info="Choose search type",
)
with gr.Row():
num_results_input = gr.Slider(
minimum=1,
maximum=20,
value=4,
step=1,
label="Number of Results",
info="Optional: How many results to fetch (default: 4)",
)
search_button = gr.Button("Search", variant="primary")
output = gr.Textbox(
label="Extracted Content",
lines=25,
max_lines=50,
info="The extracted article content will appear here",
)
# Add examples
gr.Examples(
examples=[
["OpenAI GPT-5 latest developments", "news", 5],
["React hooks useState", "search", 4],
["Tesla stock price today", "news", 6],
["Apple Vision Pro reviews", "search", 4],
["best Italian restaurants NYC", "search", 4],
],
inputs=[query_input, search_type_input, num_results_input],
outputs=output,
fn=search_web,
cache_examples=False,
)
search_button.click(
fn=search_web,
inputs=[query_input, search_type_input, num_results_input],
outputs=output,
)
if __name__ == "__main__":
# Launch with MCP server enabled
# The MCP endpoint will be available at: http://localhost:7860/gradio_api/mcp/sse
demo.launch(mcp_server=True, show_api=True)
|