websearch / app.py
victor's picture
victor HF Staff
Update README and app.py: change title to 'Web Search MCP', enhance rate limit to 360 requests/hour, and improve logging for rate limit and content extraction.
f2aca49
raw
history blame
10.7 kB
"""
Web Search MCP Server - Feed LLMs with fresh sources
====================================================
Prerequisites
-------------
$ pip install "gradio[mcp]" httpx trafilatura python-dateutil limits
Environment
-----------
export SERPER_API_KEY="YOUR-KEY-HERE"
Usage
-----
python app_mcp.py
Then connect to: http://localhost:7860/gradio_api/mcp/sse
"""
import os
import asyncio
from typing import Optional
from datetime import datetime
import httpx
import trafilatura
import gradio as gr
from dateutil import parser as dateparser
from limits import parse
from limits.aio.storage import MemoryStorage
from limits.aio.strategies import MovingWindowRateLimiter
# Configuration
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
SERPER_SEARCH_ENDPOINT = "https://google.serper.dev/search"
SERPER_NEWS_ENDPOINT = "https://google.serper.dev/news"
HEADERS = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}
# Rate limiting
storage = MemoryStorage()
limiter = MovingWindowRateLimiter(storage)
rate_limit = parse("360/hour")
async def search_web(
query: str, search_type: str = "search", num_results: Optional[int] = 4
) -> str:
"""
Search the web for information or fresh news, returning extracted content.
This tool can perform two types of searches:
- "search" (default): General web search for diverse, relevant content from various sources
- "news": Specifically searches for fresh news articles and breaking stories
Use "news" mode when looking for:
- Breaking news or very recent events
- Time-sensitive information
- Current affairs and latest developments
- Today's/this week's happenings
Use "search" mode (default) for:
- General information and research
- Technical documentation or guides
- Historical information
- Diverse perspectives from various sources
Args:
query (str): The search query. This is REQUIRED. Examples: "apple inc earnings",
"climate change 2024", "AI developments"
search_type (str): Type of search. This is OPTIONAL. Default is "search".
Options: "search" (general web search) or "news" (fresh news articles).
Use "news" for time-sensitive, breaking news content.
num_results (int): Number of results to fetch. This is OPTIONAL. Default is 4.
Range: 1-20. More results = more context but longer response time.
Returns:
str: Formatted text containing extracted content with metadata (title,
source, date, URL, and main text) for each result, separated by dividers.
Returns error message if API key is missing or search fails.
Examples:
- search_web("OpenAI GPT-5", "news") - Get 5 fresh news articles about OpenAI
- search_web("python tutorial", "search") - Get 4 general results about Python (default count)
- search_web("stock market today", "news", 10) - Get 10 news articles about today's market
- search_web("machine learning basics") - Get 4 general search results (all defaults)
"""
if not SERPER_API_KEY:
return "Error: SERPER_API_KEY environment variable is not set. Please set it to use this tool."
# Validate and constrain num_results
if num_results is None:
num_results = 4
num_results = max(1, min(20, num_results))
# Validate search_type
if search_type not in ["search", "news"]:
search_type = "search"
try:
# Check rate limit
if not await limiter.hit(rate_limit, "global"):
print(f"[{datetime.now().isoformat()}] Rate limit exceeded")
return "Error: Rate limit exceeded. Please try again later (limit: 500 requests per hour)."
# Select endpoint based on search type
endpoint = (
SERPER_NEWS_ENDPOINT if search_type == "news" else SERPER_SEARCH_ENDPOINT
)
# Prepare payload
payload = {"q": query, "num": num_results}
if search_type == "news":
payload["type"] = "news"
payload["page"] = 1
async with httpx.AsyncClient(timeout=15) as client:
resp = await client.post(endpoint, headers=HEADERS, json=payload)
if resp.status_code != 200:
return f"Error: Search API returned status {resp.status_code}. Please check your API key and try again."
# Extract results based on search type
if search_type == "news":
results = resp.json().get("news", [])
else:
results = resp.json().get("organic", [])
if not results:
return f"No {search_type} results found for query: '{query}'. Try a different search term or search type."
# Fetch HTML content concurrently
urls = [r["link"] for r in results]
async with httpx.AsyncClient(timeout=20, follow_redirects=True) as client:
tasks = [client.get(u) for u in urls]
responses = await asyncio.gather(*tasks, return_exceptions=True)
# Extract and format content
chunks = []
successful_extractions = 0
for meta, response in zip(results, responses):
if isinstance(response, Exception):
continue
# Extract main text content
body = trafilatura.extract(
response.text, include_formatting=False, include_comments=False
)
if not body:
continue
successful_extractions += 1
print(
f"[{datetime.now().isoformat()}] Successfully extracted content from {meta['link']}"
)
# Format the chunk based on search type
if search_type == "news":
# News results have date and source
try:
date_str = meta.get("date", "")
if date_str:
date_iso = dateparser.parse(date_str, fuzzy=True).strftime(
"%Y-%m-%d"
)
else:
date_iso = "Unknown"
except Exception:
date_iso = "Unknown"
chunk = (
f"## {meta['title']}\n"
f"**Source:** {meta.get('source', 'Unknown')} "
f"**Date:** {date_iso}\n"
f"**URL:** {meta['link']}\n\n"
f"{body.strip()}\n"
)
else:
# Search results don't have date/source but have domain
domain = meta["link"].split("/")[2].replace("www.", "")
chunk = (
f"## {meta['title']}\n"
f"**Domain:** {domain}\n"
f"**URL:** {meta['link']}\n\n"
f"{body.strip()}\n"
)
chunks.append(chunk)
if not chunks:
return f"Found {len(results)} {search_type} results for '{query}', but couldn't extract readable content from any of them. The websites might be blocking automated access."
result = "\n---\n".join(chunks)
summary = f"Successfully extracted content from {successful_extractions} out of {len(results)} {search_type} results for query: '{query}'\n\n---\n\n"
print(
f"[{datetime.now().isoformat()}] Extraction complete: {successful_extractions}/{len(results)} successful for query '{query}'"
)
return summary + result
except Exception as e:
return f"Error occurred while searching: {str(e)}. Please try again or check your query."
# Create Gradio interface
with gr.Blocks(title="Web Search MCP Server") as demo:
gr.HTML(
"""
<div style="background-color: rgba(59, 130, 246, 0.1); border: 1px solid rgba(59, 130, 246, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
<p style="color: rgb(59, 130, 246); margin: 0; font-size: 14px; font-weight: 500;">
🀝 Community resource β€” please use responsibly to keep this service available for everyone
</p>
</div>
"""
)
gr.Markdown(
"""
# πŸ” Web Search MCP Server
This MCP server provides web search capabilities to LLMs. It can perform general web searches
or specifically search for fresh news articles, extracting the main content from results.
**Search Types:**
- **General Search**: Diverse results from various sources (blogs, docs, articles, etc.)
- **News Search**: Fresh news articles and breaking stories from news sources
**Note:** This interface is primarily designed for MCP tool usage by LLMs, but you can
also test it manually below.
"""
)
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(
label="Search Query",
placeholder='e.g. "OpenAI news", "climate change 2024", "AI developments"',
info="Required: Enter your search query",
)
with gr.Column(scale=1):
search_type_input = gr.Radio(
choices=["search", "news"],
value="search",
label="Search Type",
info="Choose search type",
)
with gr.Row():
num_results_input = gr.Slider(
minimum=1,
maximum=20,
value=4,
step=1,
label="Number of Results",
info="Optional: How many results to fetch (default: 4)",
)
search_button = gr.Button("Search", variant="primary")
output = gr.Textbox(
label="Extracted Content",
lines=25,
max_lines=50,
info="The extracted article content will appear here",
)
# Add examples
gr.Examples(
examples=[
["OpenAI GPT-5 latest developments", "news", 5],
["React hooks useState", "search", 4],
["Tesla stock price today", "news", 6],
["Apple Vision Pro reviews", "search", 4],
["best Italian restaurants NYC", "search", 4],
],
inputs=[query_input, search_type_input, num_results_input],
outputs=output,
fn=search_web,
cache_examples=False,
)
search_button.click(
fn=search_web,
inputs=[query_input, search_type_input, num_results_input],
outputs=output,
)
if __name__ == "__main__":
# Launch with MCP server enabled
# The MCP endpoint will be available at: http://localhost:7860/gradio_api/mcp/sse
demo.launch(mcp_server=True, show_api=True)