Spaces:
No application file
No application file
Create main.py
#2
by
AP123
- opened
main.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import glob
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import uuid
|
| 6 |
+
from src.pipelines.pipeline_animatediff_pix2pix import StableDiffusionInstructPix2PixPipeline
|
| 7 |
+
from diffusers import EulerAncestralDiscreteScheduler
|
| 8 |
+
import torch
|
| 9 |
+
from src.models.unet import UNet3DConditionModel
|
| 10 |
+
import numpy as np
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import imageio
|
| 13 |
+
|
| 14 |
+
def convert_frames_to_mp4(frames, filename, fps=30):
|
| 15 |
+
"""Converts a list of PIL Image frames to an MP4 file.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
frames: A list of PIL Image frames.
|
| 19 |
+
filename: The name of the MP4 file to save.
|
| 20 |
+
fps: Frames per second for the video.
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
None
|
| 24 |
+
"""
|
| 25 |
+
# Convert PIL Images to numpy arrays
|
| 26 |
+
numpy_frames = [np.array(frame) for frame in frames]
|
| 27 |
+
# Write frames to mp4
|
| 28 |
+
imageio.mimwrite(filename, numpy_frames, fps=fps)
|
| 29 |
+
|
| 30 |
+
def convert_frames_to_gif(frames, filename, duration=100):
|
| 31 |
+
"""Converts a list of PIL Image frames to a GIF file.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
frames: A list of PIL Image frames.
|
| 35 |
+
filename: The name of the GIF file to save.
|
| 36 |
+
duration: Duration of each frame in milliseconds.
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
None
|
| 40 |
+
"""
|
| 41 |
+
frames[0].save(
|
| 42 |
+
filename,
|
| 43 |
+
save_all=True,
|
| 44 |
+
append_images=frames[1:],
|
| 45 |
+
loop=0,
|
| 46 |
+
duration=duration
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def convert_frames_to_gif_with_fps(frames, filename, fps=30):
|
| 51 |
+
"""Converts a list of PIL Image frames to a GIF file using fps.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
frames: A list of PIL Image frames.
|
| 55 |
+
filename: The name of the GIF file to save.
|
| 56 |
+
fps: Frames per second for the gif.
|
| 57 |
+
|
| 58 |
+
Returns:
|
| 59 |
+
None
|
| 60 |
+
"""
|
| 61 |
+
duration = 1000 // fps
|
| 62 |
+
frames[0].save(
|
| 63 |
+
filename,
|
| 64 |
+
save_all=True,
|
| 65 |
+
append_images=frames[1:],
|
| 66 |
+
loop=0,
|
| 67 |
+
duration=duration
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def run(t2i_model,
|
| 72 |
+
prompt="",
|
| 73 |
+
negative_prompt="",
|
| 74 |
+
frame_count=16,
|
| 75 |
+
num_inference_steps=20,
|
| 76 |
+
guidance_scale=7.5,
|
| 77 |
+
image_guidance_scale=1.5,
|
| 78 |
+
width=512,
|
| 79 |
+
height=512,
|
| 80 |
+
dtype="float16",
|
| 81 |
+
output_frames_directory="output_frames",
|
| 82 |
+
output_video_directory="output_video",
|
| 83 |
+
output_gif_directory="output_gif",
|
| 84 |
+
motion_module="viddle/viddle-pix2pix-animatediff-v1.ckpt",
|
| 85 |
+
init_image=None,
|
| 86 |
+
init_folder=None,
|
| 87 |
+
seed=42,
|
| 88 |
+
fps=15,
|
| 89 |
+
no_save_frames=False,
|
| 90 |
+
no_save_video=False,
|
| 91 |
+
no_save_gif=False,
|
| 92 |
+
):
|
| 93 |
+
scheduler_kwargs = {
|
| 94 |
+
"num_train_timesteps": 1000,
|
| 95 |
+
"beta_start": 0.00085,
|
| 96 |
+
"beta_end": 0.012,
|
| 97 |
+
"beta_schedule": "linear",
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 101 |
+
if dtype == "float16":
|
| 102 |
+
dtype = torch.float16
|
| 103 |
+
variant = "fp16"
|
| 104 |
+
elif dtype == "float32":
|
| 105 |
+
dtype = torch.float32
|
| 106 |
+
variant = "fp32"
|
| 107 |
+
|
| 108 |
+
unet_additional_kwargs = {
|
| 109 |
+
"in_channels": 8,
|
| 110 |
+
"unet_use_cross_frame_attention": False,
|
| 111 |
+
"unet_use_temporal_attention": False,
|
| 112 |
+
"use_motion_module": True,
|
| 113 |
+
"motion_module_resolutions": [1, 2, 4, 8],
|
| 114 |
+
"motion_module_mid_block": False,
|
| 115 |
+
"motion_module_decoder_only": False,
|
| 116 |
+
"motion_module_type": "Vanilla",
|
| 117 |
+
"motion_module_kwargs": {
|
| 118 |
+
"num_attention_heads": 8,
|
| 119 |
+
"num_transformer_block": 1,
|
| 120 |
+
"attention_block_types": ["Temporal_Self", "Temporal_Self"],
|
| 121 |
+
"temporal_position_encoding": True,
|
| 122 |
+
"temporal_position_encoding_max_len": 32,
|
| 123 |
+
"temporal_attention_dim_div": 1,
|
| 124 |
+
},
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
| 128 |
+
t2i_model,
|
| 129 |
+
scheduler=EulerAncestralDiscreteScheduler(**scheduler_kwargs),
|
| 130 |
+
safety_checker=None,
|
| 131 |
+
feature_extractor=None,
|
| 132 |
+
requires_safety_checker=False,
|
| 133 |
+
torch_dtype=dtype,
|
| 134 |
+
variant=variant,
|
| 135 |
+
).to(device)
|
| 136 |
+
|
| 137 |
+
pipeline.unet = UNet3DConditionModel.from_pretrained_unet(pipeline.unet,
|
| 138 |
+
unet_additional_kwargs=unet_additional_kwargs,
|
| 139 |
+
).to(device=device, dtype=dtype)
|
| 140 |
+
|
| 141 |
+
pipeline.enable_vae_slicing()
|
| 142 |
+
|
| 143 |
+
motion_module_state_dict = torch.load(motion_module, map_location="cpu")
|
| 144 |
+
_, unexpected = pipeline.unet.load_state_dict(motion_module_state_dict, strict=False)
|
| 145 |
+
assert len(unexpected) == 0
|
| 146 |
+
|
| 147 |
+
if init_image is not None and init_folder is None:
|
| 148 |
+
image = Image.open(init_image)
|
| 149 |
+
image = image.resize((width, height))
|
| 150 |
+
elif init_folder is not None and init_image is None:
|
| 151 |
+
image_paths = glob.glob(init_folder + "/*.png")
|
| 152 |
+
# add the jpgs
|
| 153 |
+
image_paths += glob.glob(init_folder + "/*.jpg")
|
| 154 |
+
image_paths.sort()
|
| 155 |
+
image_paths = image_paths[:frame_count]
|
| 156 |
+
|
| 157 |
+
image = []
|
| 158 |
+
|
| 159 |
+
for image_path in image_paths:
|
| 160 |
+
image.append(Image.open(image_path).resize((width, height)))
|
| 161 |
+
else:
|
| 162 |
+
raise ValueError("Must provide either init_image or init_folder but not both")
|
| 163 |
+
|
| 164 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 165 |
+
|
| 166 |
+
frames = pipeline(prompt=prompt,
|
| 167 |
+
negative_prompt=negative_prompt,
|
| 168 |
+
num_inference_steps=num_inference_steps,
|
| 169 |
+
guidance_scale=guidance_scale,
|
| 170 |
+
image_guidance_scale=image_guidance_scale,
|
| 171 |
+
image=image,
|
| 172 |
+
video_length=frame_count,
|
| 173 |
+
generator=generator,
|
| 174 |
+
)[0]
|
| 175 |
+
|
| 176 |
+
# create a uuid prefix for the output files
|
| 177 |
+
uuid_prefix = str(uuid.uuid4())
|
| 178 |
+
|
| 179 |
+
if not no_save_frames:
|
| 180 |
+
# Create output directory
|
| 181 |
+
Path(output_frames_directory).mkdir(parents=True, exist_ok=True)
|
| 182 |
+
|
| 183 |
+
# make the specific directory for this run
|
| 184 |
+
output_frames_directory = os.path.join(output_frames_directory, uuid_prefix)
|
| 185 |
+
Path(output_frames_directory).mkdir(parents=True, exist_ok=True)
|
| 186 |
+
# Save frames
|
| 187 |
+
for i, frame in enumerate(frames):
|
| 188 |
+
frame.save(os.path.join(output_frames_directory, f"{str(i).zfill(4)}.png"))
|
| 189 |
+
|
| 190 |
+
if not no_save_video:
|
| 191 |
+
# Create output directory
|
| 192 |
+
Path(output_video_directory).mkdir(parents=True, exist_ok=True)
|
| 193 |
+
|
| 194 |
+
convert_frames_to_mp4(frames, os.path.join(output_video_directory, f"{uuid_prefix}.mp4"), fps=fps)
|
| 195 |
+
|
| 196 |
+
if not no_save_gif:
|
| 197 |
+
# Create output directory
|
| 198 |
+
Path(output_gif_directory).mkdir(parents=True, exist_ok=True)
|
| 199 |
+
|
| 200 |
+
# Convert frames to GIF
|
| 201 |
+
convert_frames_to_gif(frames, os.path.join(output_gif_directory, f"{uuid_prefix}.gif"), duration=1000 // fps)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
if __name__ == "__main__":
|
| 205 |
+
argsparser = argparse.ArgumentParser()
|
| 206 |
+
argsparser.add_argument("--prompt", type=str, default="")
|
| 207 |
+
argsparser.add_argument("--negative_prompt", type=str, default="")
|
| 208 |
+
argsparser.add_argument("--frame_count", type=int, default=16)
|
| 209 |
+
argsparser.add_argument("--num_inference_steps", type=int, default=20)
|
| 210 |
+
argsparser.add_argument("--guidance_scale", type=float, default=7.5)
|
| 211 |
+
argsparser.add_argument("--image_guidance_scale", type=float, default=1.5)
|
| 212 |
+
argsparser.add_argument("--width", type=int, default=512)
|
| 213 |
+
argsparser.add_argument("--height", type=int, default=512)
|
| 214 |
+
argsparser.add_argument("--dtype", type=str, default="float16")
|
| 215 |
+
argsparser.add_argument("--output_frames_directory", type=str, default="output_frames")
|
| 216 |
+
argsparser.add_argument("--output_video_directory", type=str, default="output_videos")
|
| 217 |
+
argsparser.add_argument("--output_gif_directory", type=str, default="output_gifs")
|
| 218 |
+
argsparser.add_argument("--init_image", type=str, default=None)
|
| 219 |
+
argsparser.add_argument("--init_folder", type=str, default=None)
|
| 220 |
+
argsparser.add_argument("--motion_module", type=str, default="checkpoints/viddle-pix2pix-animatediff-v1.ckpt")
|
| 221 |
+
argsparser.add_argument("--t2i_model", type=str, default="timbrooks/instruct-pix2pix")
|
| 222 |
+
argsparser.add_argument("--seed", type=int, default=42)
|
| 223 |
+
argsparser.add_argument("--fps", type=int, default=15)
|
| 224 |
+
argsparser.add_argument("--no_save_frames", action="store_true", default=False)
|
| 225 |
+
argsparser.add_argument("--no_save_video", action="store_true", default=False)
|
| 226 |
+
argsparser.add_argument("--no_save_gif", action="store_true", default=False)
|
| 227 |
+
args = argsparser.parse_args()
|
| 228 |
+
|
| 229 |
+
run(t2i_model=args.t2i_model,
|
| 230 |
+
prompt=args.prompt,
|
| 231 |
+
negative_prompt=args.negative_prompt,
|
| 232 |
+
frame_count=args.frame_count,
|
| 233 |
+
num_inference_steps=args.num_inference_steps,
|
| 234 |
+
guidance_scale=args.guidance_scale,
|
| 235 |
+
width=args.width,
|
| 236 |
+
height=args.height,
|
| 237 |
+
dtype=args.dtype,
|
| 238 |
+
output_frames_directory=args.output_frames_directory,
|
| 239 |
+
output_video_directory=args.output_video_directory,
|
| 240 |
+
output_gif_directory=args.output_gif_directory,
|
| 241 |
+
motion_module=args.motion_module,
|
| 242 |
+
init_image=args.init_image,
|
| 243 |
+
init_folder=args.init_folder,
|
| 244 |
+
seed=args.seed,
|
| 245 |
+
fps=args.fps,
|
| 246 |
+
no_save_frames=args.no_save_frames,
|
| 247 |
+
no_save_video=args.no_save_video,
|
| 248 |
+
no_save_gif=args.no_save_gif,
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|