ARIA / midi_emotion /src /data /data_processing.py
vincentamato's picture
Initial commit
69defc9
import pypianoroll
from operator import attrgetter
import torch
from copy import deepcopy
import numpy as np
# Forward processing. (Midi to indices)
def read_pianoroll(fp, return_tempo=False):
# Reads pianoroll file and converts to PrettyMidi
pr = pypianoroll.load(fp)
mid = pr.to_pretty_midi()
if return_tempo:
tempo = np.mean(pr.tempo)
return mid, tempo
else:
return mid
def trim_midi(mid_orig, start, end, strict=True):
"""Trims midi file
Args:
mid (PrettyMidi): input midi file
start (float): start time
end (float): end time
strict (bool, optional):
If false, includes notes that starts earlier than start time,
and ends later than start time. Or ends later than end time,
but starts earlier than end time. The start and end times
are readjusted so they fit into the given boundaries.
Defaults to True.
Returns:
(PrettyMidi): Trimmed output MIDI.
"""
eps = 1e-3
mid = deepcopy(mid_orig)
for ins in mid.instruments:
if strict:
ins.notes = [note for note in ins.notes if note.start >= start and note.end <= end]
else:
ins.notes = [note for note in ins.notes \
if note.end > start + eps and note.start < end - eps]
for note in ins.notes:
if not strict:
# readjustment
note.start = max(start, note.start)
note.end = min(end, note.end)
# Make the excerpt start at time zero
note.start -= start
note.end -= start
# Filter out empty tracks
mid.instruments = [ins for ins in mid.instruments if ins.notes]
return mid
def mid_to_timed_tuples(music, event_sym2idx, min_pitch: int = 21, max_pitch: int = 108):
# for sorting (though not absolutely necessary)
on_off_priority = ["ON", "OFF"]
ins_priority = ["DRUMS", "BASS", "GUITAR", "PIANO", "STRINGS"]
on_off_priority = {val: i for i, val in enumerate(on_off_priority)}
ins_priority = {val: i for i, val in enumerate(ins_priority)}
# Add instrument info to notes
for i, track in enumerate(music.instruments):
for note in track.notes:
note.instrument = track.name
# Collect notes
notes = []
for track in music.instruments:
notes.extend(track.notes)
# Raise an error if no notes is found
if not notes:
raise RuntimeError("No notes found.")
# Sort the notes
notes.sort(key=attrgetter("start", "pitch", "duration", "velocity", "instrument"))
# Collect note-related events
note_events = []
for note in notes:
if note.pitch >= min_pitch and note.pitch <= max_pitch:
start = round(note.start, 6)
end = round(note.end, 6)
ins = note.instrument.upper()
note_events.append((start, on_off_priority["ON"],
ins_priority[ins], (event_sym2idx["_".join(["ON", ins])], note.pitch)))
note_events.append((end, on_off_priority["OFF"],
ins_priority[ins], (event_sym2idx["_".join(["OFF", ins])], note.pitch)))
# Sort events by time
note_events = sorted(note_events)
note_events = [(note[0], note[-1]) for note in note_events]
return note_events
def timed_tuples_to_tuples(note_events, event_sym2idx, max_timeshift: int = 1000,
timeshift_step: int = 8):
# Create a list for all events
events = []
# Initialize the time cursor
time_cursor = int(round(note_events[0][0] * 1000))
# Iterate over note events
for time, symbol in note_events:
time = int(round(time * 1000))
if time > time_cursor:
timeshift = time - time_cursor
# First split timeshifts longer than max
n_max = timeshift // max_timeshift
for _ in range(n_max):
events.append((event_sym2idx["TIMESHIFT"], max_timeshift))
# quantize and add remaining
rem = timeshift % max_timeshift
if rem > 0:
# do not round to zero
rem = int(timeshift_step * round(float(rem) / timeshift_step))
if rem == 0:
rem = timeshift_step # do not round to zero
events.append((event_sym2idx["TIMESHIFT"], rem))
time_cursor = time
if symbol[0] != "<": # if not special symbol
events.append(symbol)
return events
def list_to_tensor(list_, sym2idx):
indices = [sym2idx[sym] for sym in list_]
indices = torch.LongTensor(indices)
return indices
def mid_to_bars(mid, event_sym2idx):
"""Takes MIDI, extracts bars
returns ndarray where each row is a token
each token has two elements,
first is an index of event, such as DRUMS_OFF, or TIMESHIFT
second is the value (pitch for note or time for timeshift)
"""
try:
bar_times = [round(bar, 6) for bar in mid.get_downbeats()]
bar_times.append(bar_times[-1] + (bar_times[-1] - bar_times[-2])) # to end
bar_times.append(bar_times[-1] + (bar_times[-1] - bar_times[-2])) # to end
note_events = mid_to_timed_tuples(mid, event_sym2idx)
i_bar = -1
i_note = 0
bars = []
cur_bar_note_events = []
cur_bar_end = -float("inf")
while i_note < len(note_events):
time, note = note_events[i_note]
if time < cur_bar_end:
cur_bar_note_events.append((time, note))
i_note += 1
else:
cur_bar_note_events.append((cur_bar_end, "<BAR_END>"))
if len(cur_bar_note_events) > 2:
events = timed_tuples_to_tuples(cur_bar_note_events, event_sym2idx)
events = tuples_to_array(events)
bars.append(events)
i_bar += 1
cur_bar_start = bar_times[i_bar]
cur_bar_end = bar_times[i_bar+1]
cur_bar_note_events = [(cur_bar_start, "<BAR_START>")]
except:
bars = None
return bars
def tuples_to_array(x):
x = [list(el) for el in x]
x = np.asarray(x, dtype=np.int16)
return x
def get_maps(min_pitch=21,max_pitch=108,max_timeshift=1000,timeshift_step=8):
# Get mapping dictionary
instruments = ["DRUMS", "GUITAR", "BASS", "PIANO", "STRINGS"]
special_symbols = ["<PAD>", "<START>"]
on_offs = ["OFF", "ON"]
token_syms = deepcopy(special_symbols)
event_syms = []
transposable_event_syms = []
for ins in instruments:
for on_off in on_offs:
event_syms.append(f"{on_off}_{ins}")
if ins != "DRUMS":
transposable_event_syms.append(f"{on_off}_{ins}")
for pitch in range(min_pitch, max_pitch + 1):
token_syms.append((f"{on_off}_{ins}", pitch))
for timeshift in range(timeshift_step, max_timeshift + timeshift_step, timeshift_step):
token_syms.append(("TIMESHIFT", timeshift))
event_syms.append("TIMESHIFT")
map = {}
map["event2idx"] = {sym: idx for idx, sym in enumerate(event_syms)}
map["idx2event"] = {idx: sym for idx, sym in enumerate(event_syms)}
map["tuple2idx"] = {}
map["idx2tuple"] = {}
for idx, sym in enumerate(token_syms):
if isinstance(sym, tuple):
indexed_tuple = (map["event2idx"][sym[0]], sym[1])
else:
indexed_tuple = sym
map["tuple2idx"][indexed_tuple] = idx
map["idx2tuple"][idx] = indexed_tuple
transposable_event_inds = [map["event2idx"][sym] for sym in transposable_event_syms]
map["transposable_event_inds"] = transposable_event_inds
return map
def transpose(x, n, transposable_event_inds, min_pitch = 21, max_pitch = 108):
# Transpose melody
for i in range(x.size(0)):
if x[i, 0].item() in transposable_event_inds and \
x[i, 1].item() + n <= max_pitch and \
x[i, 1].item() + n >= min_pitch:
x[i, 1] += n
return x
def tuples_to_ind_tensor(x, tuple2idx):
# Tuples to indices
x = [tuple2idx[el] for el in x]
x = torch.tensor(x, dtype=torch.int16)
return x
def tensor_to_tuples(x):
x = [tuple(row.tolist()) for row in x]
return x
def tensor_to_ind_tensor(x, tuple2idx):
x = tensor_to_tuples(x)
x = tuples_to_ind_tensor(x, tuple2idx)
return x